内容概要:本文介绍了基于CWT-CNN-SVM的滚动轴承故障诊断模型及其Matlab代码实现。首先,通过连续小波变换(CWT),将原始振动信号转化为时频图,以便更好地观察和分析信号特性。接着,利用卷积神经网络(CNN)提取时频图中的特征,并通过支持向量机(SVM)进行多级分类任务,以提高诊断的准确性和鲁棒性。最后,使用t-SNE进行样本分布的可视化,帮助理解和验证模型的分类结果。整个流程包括数据预处理、CWT转换、CNN-SVM训练以及T-SNE可视化四个主要步骤。 适合人群:从事机械设备故障诊断的研究人员和技术人员,尤其是对滚动轴承故障诊断感兴趣的工程师。 使用场景及目标:适用于需要对滚动轴承进行故障诊断的实际应用场景,旨在通过先进的机器学习和信号处理技术,实现对滚动轴承故障的早期预警和精准判断,从而降低设备维护成本和减少停机时间。 其他说明:文中详细描述了每个步骤的技术细节和实现方法,并提供了具体的Matlab代码实现指南。未来研究方向包括进一步优化模型参数和改进模型结构,以提升诊断效果。
2025-09-22 19:29:02 332KB
1
基于CNN和SVM的设备审查实现
2022-12-19 17:00:35 200.52MB cnn svm 网络安全审查 设备安全检测
MATLAB实现CNN-SVM卷积支持向量机多输入回归预测(完整源码和数据) 数据为多输入回归数据,输入7个特征,输出1个变量,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。
基于CNN-SVM数据预测模型(python) 卷积支持向量机数据预测模型,CNN-SVM数据预测模型(python) 卷积支持向量机数据预测模型,CNN-SVM数据预测模型(python)
1
MATLAB实现CNN-SVM卷积支持向量机多特征分类预测(完整源码和数据) 数据为多特征分类数据,输入12个特征,分四类,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。
卷积神经网络(CNN)用来提取特征,采用SVM分类器进行训练和分类
2022-10-21 12:05:45 727KB SVMCNN SVM特征提取 SVM python
1
卷积神经网络与支持向量机结合的python代码
2022-10-20 15:28:51 8KB 深度学习 pythonCNN-SVM pythoncnn SVM
1
基于 CNN-SVM-GA 的图像分类系统的设计与实现代码大全.pdf基于 CNN-SVM-GA 的图像分类系统的设计与实现代码大全.pdf基于 CNN-SVM-GA 的图像分类系统的设计与实现代码大全.pdf
2022-10-19 17:06:07 1.06MB 基于CNN-SVM-GA的图
1
MATLAB CNN-SVM分类程序,含详细注释及数据, 以改进VGG网络为例,提取某一网络的某一层特征并用SVM完成分类。
2022-06-13 09:06:45 2KB CNN-SVM CNN SVM CNN-SVM分类
CNN+SVM结合的python程序
2022-04-06 16:06:52 9.44MB cnn
1