人工智能(Artificial Intelligence,简称AI)是一种前沿的计算机科学技术,其核心目标是通过模拟、延伸和拓展人类智能来构建智能机器与系统。它融合了计算机科学、数学、统计学、心理学、神经科学等多个学科的知识,并利用深度学习、机器学习等算法,使计算机能够从数据中学习、理解和推断。 在实际应用中,人工智能体现在诸多领域:如机器人技术,其中机器人不仅能执行预设任务,还能通过感知环境自主决策;语言识别和语音助手技术,如Siri或小爱同学,它们能理解并回应用户的语音指令;图像识别技术,在安防监控、自动驾驶等领域实现对视觉信息的精准分析;自然语言处理技术,应用于搜索引擎、智能客服及社交媒体的情感分析等。 此外,专家系统能够在特定领域提供专业级建议,物联网中的智能设备借助AI优化资源分配与操作效率。人工智能的发展不断改变着我们的生活方式,从工作场景到日常生活,智能化正以前所未有的方式提升生产力、便捷性和生活质量,同时也在挑战伦理边界与社会规则,促使我们重新审视人与技术的关系及其长远影响。
2024-10-19 19:09:31 4.15MB 人工智能 ai python
1
NumpyDL:Numpy深度学习库 内容描述 NumpyDL是: 基于纯Numpy / Python 对于DL教育 特征 其主要特点是: 纯洁的脾气暴躁 原生于Python 基本支持自动区分 提供了常用的模型:MLP,RNN,LSTM和CNN 几个AI任务的示例 对于玩具聊天机器人应用 文献资料 可用的在线文档: 最新文件 开发文档 稳定文档 可用的离线PDF: 最新PDF 安装 使用pip安装NumpyDL: $ > pip install npdl 从源代码安装: $ > python setup.py install 例子 NumpyDL提供了一些AI任务示例: 句子分类 示例/lstm_sentence_classification.py中的LSTM 例子中的CNN / cnn_sentence_classification.py mnist手写识
2024-02-23 17:06:34 16.61MB deep-neural-networks deep-learning
1
1.调节步伐:调节学习速率,使每一次的更新“步伐”不同 2.优化起点:合理初始化权重(weights initialization)、预训练网 1. 为什么神经
2023-03-29 00:40:31 1.51MB 深度学习 dnn cnn rnn
1
训练 1.处理train 数据集 python3 ./utils/make_data.py 2.训练网络 python3 train.py 测试 1.加载模型,将训练好的模型放入./model/中 2.向test_img_list中添加需要测试的图片列表 test_img_list = ['/home/tony/ocr/test_data/00023.jpg'] 3.运行模型 python3 test_crnn.py
2023-02-18 10:48:29 1.97MB OCR CRNN RNN 中文识别
1
图片字幕 介绍 建立一个模型以从图像生成字幕。 给定图像后,模型可以用英语描述图像中的内容。 为了实现这一点,我们的模型由一个编码器(一个CNN)和一个解码器(一个RNN)组成。 为CNN编码器提供了用于分类任务的图像,其输出被馈送到RNN解码器,后者输出英语句子。 该模型及其超参数的调整基于论文和。 我们使用微软Çommon在CO NTEXT(MS COCO)O bjects为这个项目。 它是用于场景理解的大规模数据集。 该数据集通常用于训练和基准化对象检测,分段和字幕算法。 有关下载数据的说明,请参见下面的“数据”部分。 代码 该代码可以分为两类: 笔记本-该项目的主要代码由一系列Jupyter笔记本构成: 0_Dataset.ipynb介绍数据集并绘制一些样本图像。 1_Preliminaries.ipynb加载和预处理数据并使用模型进行实验。 2_Training.ip
2023-01-02 13:00:14 2.09MB nlp computer-vision cnn pytorch
1
贝叶斯优化CNN-RNN时间序列预测(Matlab完整程序) 贝叶斯优化CNN-LSTM时间序列预测(Matlab完整程序) 贝叶斯优化CNN-BiLSTM时间序列预测(Matlab完整程序)
2022-11-26 09:29:56 272KB 贝叶斯优化 CNN-RNN CNN-LSTM CNN-BiLSTM
这是一个关于深度学习(CNN+RNN+LSTM)等的基础知识学习课件。
2022-11-15 22:02:35 8.33MB 深度学习 人工智能课件 CNN RNN
课程导语:   人工智能可谓是现阶段最火的行业,在资本和技术协同支持下正在进入高速发展期。当今全球市值前五大公司都指向同一发展目标:人工智能。近几年,人工智能逐渐从理论科学落地到现实中,与生活越来越息息相关,相关的各种职位炙手可热,而深度学习更是人工智能无法绕开的重要一环。 从AlphaGo打败李世石开始,深度学习技术越来越引起社会各界的广泛关注。不只学术界,甚至在工业界也取得了重大突破和广泛应用。其中应用最广的研究领域就是图像处理和自然语言处理。而要入门深度学习,CNN和RNN作为最常用的两种神经网络是必学的。网上关于深度学习的资料很多,但大多知识点分散、内容不系统,或者以理论为主、代码实操少,造成学员学习成本高。本门课程将从最基础的神经元出发,对深度学习的基础知识进行全面讲解,帮助大家迅速成为人工智能领域的入门者,是进阶人工智能深层领域的基石。 讲师简介: 赵辛,人工智能算法科学家。2019年福布斯科技榜U30,深圳市海外高层次人才(孔雀人才)。澳大利亚新南威尔士大学全奖博士,SCI收录其发表过的10篇国际期刊学术文章。曾任深圳市微埃智能科技有限公司联合创始人。CSDN人工智能机器
2022-09-14 17:51:08 302.58MB CNN RNN 深度学习 人工智能 迁移学习 神经网络
1
使用多种方法完成MNIST分类任务 Python 3.6 Pytorch 1.0 Scikit-learn 0.21 无需下载数据直接跑,代码自动下载 逻辑回归 Logistic Regression 多层感知机 MLP K近邻 KNN 支持向量机 SVM 卷积神经网络 CNN 循环神经网络 RNN
2022-06-19 17:05:18 1.04MB SVM CNN RNN KNN
人工智能-项目实践-文本分类-CNN-RNN中文文本分类,基于TensorFlow 使用卷积神经网络以及循环神经网络进行中文文本分类 CNN做句子分类的论文可以参看: Convolutional Neural Networks for Sentence Classification 以及字符级CNN的论文:Character-level Convolutional Networks for Text Classification 本文是基于TensorFlow在中文数据集上的简化实现,使用了字符级CNN和RNN对中文文本进行分类,达到了较好的效果。 文中所使用的Conv1D与论文中有些不同,详细参考官方文档:tf.nn.conv1d
2022-05-13 09:08:46 410KB 文档资料 cnn rnn tensorflow