CNN卷积神经网络 FPGA加速器实现(小型)CNN FPGA加速器实现(小型) 仿真通过,用于foga和cnn学习 通过本工程可以学习深度学习cnn算法从软件到硬件fpga的部署。 网络软件部分基于tf2实现,通过python导出权值,硬件部分verilog实现,纯手写代码,可读性高,高度参数化配置,可以针对速度或面积要求设置不同加速效果。 参数量化后存储在片上ram,基于vivado开发。 直接联系提供本项目实现中所用的所有软件( python)和硬件代码( verilog)。 本篇文档主要探讨了如何将CNN卷积神经网络算法从软件层面迁移到硬件层面,具体来说就是使用FPGA硬件加速器来实现CNN模型。文档中提到的“小型CNN FPGA加速器”指的是针对卷积神经网络的小型化硬件实现,该项目已经通过了仿真测试,并且可用于深度学习领域的研究与教学。 文档描述了整个CNN算法的软件部分是基于TensorFlow 2框架实现的,这一部分主要是用Python编程语言来完成。在软件层面上,它包括了将CNN模型的权重导出的步骤。硬件实现则是通过Verilog硬件描述语言来完成的,这部分代码是完全手动编写的,保证了高可读性和便于理解。此外,该FPGA加速器设计是高度参数化的,允许用户根据对速度或面积的不同需求来配置加速效果。 在设计过程中,对参数进行了量化处理,并将这些量化后的数据存储在片上RAM中。整个设计过程是在Xilinx的Vivado开发环境中进行的。文档还提到,提供本项目实施中所使用的所有软件代码和硬件代码,这表明项目具有开放性,便于其他研究者和开发者进行学习和实验。 从文档提供的文件名称列表来看,包含了多个与项目相关的文件,这些文件很可能包含了项目的设计细节、实现方法、仿真结果和版图解析等内容。例如,“卷积神经网络加速器实现小版图解析”可能详细描述了FPGA加速器的硬件布局,“卷积神经网络加速器实现从软件到”可能探讨了从软件算法到硬件实现的转换过程。这些文件是了解和学习该项目不可或缺的资源。 本项目是一个将深度学习算法从软件迁移到FPGA硬件平台的实践案例,通过结合TensorFlow 2和Verilog语言,实现了一个可配置参数的CNN模型加速器。项目的设计充分考虑到了代码的可读性和灵活性,并提供了完整的实现代码,便于研究和教育使用。
2025-05-02 16:43:41 397KB scss
1
verilog实现卷积神经网络CNN,包括卷积层,Relu激活层,FC全连接层,pool池化层,输入图片需要满足28*28
2022-04-22 12:05:31 7KB cnn fpga开发 人工智能 神经网络
基于verilog的CNN卷积神经网络实现,平台ISE,提供coe格式的权值参数。包括3个层,每一个层都有卷积层,池化层,激活层。需要设置rom核来调用coe文件。平台为ISE14.7
2022-04-22 12:05:31 948KB cnn fpga开发 人工智能 神经网络
基于quartusii的CNN卷积神经网络的verilog开发含report
2022-04-20 12:05:20 6.42MB cnn fpga开发 人工智能 神经网络
来自MIT深度学习团队撰写的FPGA CNN加速技术简介,里面有很多干活哦!
2021-10-11 18:42:03 4.21MB g'
1
CNN - FPGA 项目由来   毕业设计,为了蹭热点,选了几个和人工智能相关的课题,本意是希望通过毕业设计让自己了解一下机器学习,比如CNN一类的。很不幸,被体系结构实验室的老师抢走了。于是就面临了这个偏硬件的课题,用FPGA加速人工智能算法。   毕竟只是本科毕业设计,这个课题在我手里就变成了用FPGA加速CNN,本来的目的还是要完成,在大致了解了CNN之后,还是在极不情愿中做完了这个项目。   项目本质很简单,使用Verilog实现了一些CNN的模块。几乎没有多少实用价值。 另外,和大多数FPGA加速CNN的项目一样,本项目只能运行推断,不能学习,所以没有后向传播这不怪我,Xilinx自己都已经放弃治疗了。 使用   模块设计上参照了tensorflow。因为使用了全并行的设计,所以没有引入时序,也没有做流水线我不信哪块FPGA板子的部件延迟会大过总线周期,所以在资源占用上很不合理
2021-08-16 16:41:28 11KB Verilog
1
PipeCNN: An OpenCL-Based Open-Source FPGA Accelerator for Convolution Neural Networks
2019-12-21 22:25:04 3.45MB CNN,FPGA
1