转自CCF:https://dl.ccf.org.cn/lecture/lectureDetail?id=4663480272078848。 张勇,剑桥大学博士后。 摘要:健康医疗大数据是健康医疗活动的产物,同时也是进行健康医疗业务优化和辅助决策的基础。健康医疗大数据分散在多个主体管理的多个系统中,所以在应用健康医疗大数据的时候往往需要先进行数据釉合。然而由于生成数据的系统所采用的标准或规范不同,不同来源的数据之间经常存在数据不一致的情况,同时由于应用水平等问题,数据的质量也存在较大问题。数据不一 致和数据质量等问题大大阻碍了数据融合的效率和效果。知识图谱作为作为一种灵活的数据模型,通过一张图来集成所有相关的数据,同时利用对齐等技术来解决数据中存在的问题。本报告将从健康医疗大数据融合的数据模型、过程、工具和应用的角度来介绍如何应用知识图谱来进行健康医疗大数据融合。我们把健康医疗知识图谱分为概念图谱和实例图谱,定义了各 自的数据模型,然后分别介绍了各自的建立过程,以及两者之间如何建立关联。我们提出了“ 医在回路 ”的概念,对医生在构建健康领域知识图谱中的角色和职责进行了定义。基于这些数据模型,我们研发了健康知识图谱构建工具 HKGB 。该工具是一个易于扩展的、跨语言的、智能的知识图谱构建平台。基于该平台,我们构建了面向心血管疾病的知识图谱。最后本报告介绍了健康医疗知识图谱的应用情况。
2021-09-23 13:39:54 5.68MB 知识图谱 健康医疗 大数据
1
转自:https://dl.ccf.org.cn/lecture/lectureDetail?id=4663454624843776。 陈华钧,浙江大学阿里巴巴知识引擎联合实验室负责人。 摘要:知识图谱表示的向量化使得我们可以实现更易于泛化的可微分推理。然而, 基于表示学习实现的知识图谱推理和链接预测丢失了传统符号计算方法的可解释性,即:模型无去对基于向量计算或神经网络训练后得出的推理结论进行解释,导致只知结果但不知为什么。在很多真实的应用场景下,黑盒模型的可解释性缺乏导致很多应用不得不放弃采用表示学习方法 。本报告尝试探讨知识图谱与表示学习的可解释性之间的关系,具体针对基于表示学习实现的知识图谱推理的可解释性问题提出一些研究思路和解决方法,并结合真实的应用场景介绍相关的一些实践。
2021-03-25 11:52:31 5.35MB 知识图谱 可解释
1