使用LSTM实现C-MAPSS数据集里面的剩余寿命预测(Pytorch) 每轮训练后测试集误差 score:445.4610 334.5140 358.6489 365.9250 331.4520 283.3463 460.4766 314.7196 325.5950 452.3746 RMSE:16.3614 14.8254 14.9796 15.5157 14.7853 14.2053 16.2834 14.6757 14.7481 15.8802 由实验结果可知,MS-BLSTM 的预测误差均为最低水平,并且实际训练过程中收敛速度较快,涡扇发动机接近损坏时预测准确率较高。与传统机器学习方法相比,深度学习模型如CNN 和 LSTM的预测误差相对较小。而本文所提的 MS-BLSTM 混合深度学习预测模型进一步提高了 RUL 预测精度,,这得益于 MS-BLSTM 混合模型有效利用了时间段内传感器测量值的均值和方差与RUL的相关性,并使用 BLSTM学习历史数据和未来数据的长程依赖。本文所提的 MS-BLSTM 剩余使用寿命预测模型预测精度高,可有力支撑涡扇发动机的健康管理与运维决策。
2024-04-03 15:06:07 13.62MB pytorch pytorch lstm 数据集
1
C-MAPSS数据集是涡轮风扇发动机退化的模拟数据。这些数据是由美国宇航局使用商用模块化航空推进系统模拟(C-MAPSS)生成的。数据集包含21个传感器的多变量时间数据。有4个数据子集,FD00l、FD002、FD003和FD004,每个子集都有特定的运行条件和故障形式。每个数据子集都有一个训练集和一个测试集,训练集中记录的测量值是一直记录到发动机发生故障为止(run-tofailure实例)。而在测试集中,传感器记录值在故障前的某时刻终止,这样做的目的是为了预测该时刻的RUL。另外,还提供了测试数据集的真实剩余使用寿命(RUL)值。
1
这项工作介绍了 [1] 中提出的 LCI-ELM 的新改进。 新的贡献集中在训练模型对更高维度的“时变”数据的适应性上。 使用C-MAPSS数据集对提出的算法进行了研究[2]。 PSO[3] 和 R-ELM[4] 训练规则被整合到了这个任务中。 拟议算法和用户指南的详细信息可在: https : //www.researchgate.net/publication/337945405_Dynamic_Adaptation_for_Length_Changeable_Weighted_Extreme_Learning_Machine [1] YX Wu、D. Liu 和 H. Jiang,“长度可变增量极限学习机”,J. Comput。 科学技术,卷。 32号3,第 630-643 页,2017 年。 [2] A. Saxena、M. Ieee、K. Goebel、D. Simon 和
2022-03-08 22:17:47 3.46MB matlab
1