为了提高图像分割的速度和精度,提出了一种新的基于ChanVese水平集模型(CV模型)的梯度加速分割模型。首先,在CV模型的能量函数中加入一个内部能量项,抵消演化过程中水平集函数和符号距离函数的偏差,从而消除分割中周期性重新初始化的过程;其次,提出了梯度加速项,通过感兴趣区域的图像特征,快速得到该区域的边界,且能够提高弱边界的分割精度。实验证明,提出的方法不仅能够加速特定区域的分割、提高分割精度,还能保持分割过程的稳定性。
1
模糊模型设计方法归结为两种,即语义驱动和数据驱动。数据驱动模型具有更好的性能,是目前研究的热点。模糊系统辨识是数据驱动下模糊系统建模的重要手段,辨识的优良直接影响系统建模的精度。模糊系统辨识可以分为两部分进行认识,即模糊系统结构辨识和参数辨识。回顾了近年来模糊系统辨识的理论和方法,如subtractive聚类、多分辨率自适应空间分解、SVM、核函数法、粒子群算法和并行遗传算法等。对各种算法原理、特点进行了介绍,对模糊系统辨识的发展进行了展望。
1