二维下料matlab代码临床大脑计算机接口挑战WCCI 2020格拉斯哥 这是在格拉斯哥举行的WCCI 2020上举行的“临床脑计算机接口挑战赛”竞赛的数据集。 有10例因左手或右手手指活动受损而受损的偏瘫性脑卒中患者的EEG数据。 每个参与者有两个文件。 以“ T”结尾的文件名表示训练文件,以“ E”结尾的文件名表示评估/测试文件。 例如,文件名“ Parsed_P05T”建议参与者P05的训练文件,而文件“ Parsed_P05E”建议针对同一参与者的评估/测试文件。 训练文件包含与每个试验相对应的标签,而没有提供用于评估/测试文件的试验标签。 比赛的目的是找到与评估/测试文件试验相对应的标签。 数据集说明 在这里,我们描述了数据集中每个文件的内容。 所有文件均为.mat(MATLAB)格式,因此可以使用MATLAB软件轻松打开。 打开任何参与者的任何培训文件(例如,文件“ Parsed_P05T”,这是参与者“ P05”的培训文件)时,您会发现两个变量“ rawdata”和“ labels”。 变量“ rawdata”是一个3-D矩阵,其尺寸格式为“ noOfTrial X no
2023-04-13 20:23:49 220.39MB 系统开源
1
Brain-Computer Interfaces_Applying our Minds to Human-Computer Interaction Editors Tan_Nijholt ISSN 1571-5035 ISBN 978-1-84996-271-1 e-ISBN 978-1-84996-272-8
2022-05-19 14:08:02 5.35MB BCI 脑机接口 EEG
1
Milo:大脑控制的轮椅 Milo帮助人们导航,而无需动手或四肢。 我们认为它对于ALS,锁定综合征或其他形式的瘫痪患者特别有用。 我们的脑机接口利用脑电图(EEG),这是一种经济实惠,可访问且无创的技术,可以检测脑部活动。 具体而言,当用户想象运动时,Milo通过检测对运动感觉皮层(与运动相关的大脑区域)中的mu节律(7-13 Hz)的抑制来使用运动图像信号进行转向。 除运动图像外,还使用眨眼信号和下颌伪影来启动和停止动作,并表示需要转弯。 使用Milo,用户可以通过眨眼或握紧下巴在前进和停止之间切换。 他们可以通过简单地考虑左右手的运动来向左或向右转。 我们还为护理人员设计了一个Web应用程序,他们可以从中实时查看轮椅使用者的位置,以确保他们的安全。 如果用户的心律不正常或发生崩溃,也会将一条短信发送给护理人员。 此外,我们还实施了辅助驾驶功能,可用于跟踪墙和避开物体。 Github
2021-12-13 16:22:35 285.01MB eeg brain-computer-interface Python
1
通用空间模式(CSP)算法能够解决运动图像任务脑机接口(BCI)的二进制分类问题。 本文提出了一种基于滤波器组公共空间模式(FBCSP)的新方法,称为多尺度重叠FBCSP(MO-FBCSP)。 我们通过使用一对一(OvO)策略将CSP算法扩展到多类。 选择多个周期,并将其与包含有用信息的滤波器组的重叠频谱结合在一起。 在具有9个主题的基准BCI竞赛IV数据集2a上对该方法进行了评估。 随机森林(RF)分类器的平均准确度达到80%,相应的kappa值为0.734。 定量结果表明,该方案优于经典FBCSP算法超过12%。
2021-10-21 17:13:27 659KB Brain-Computer Interface; Motor Imagery;
1
适合初学者进行脑机接口部分的学习,有利于对脑机接口有初步的了解与认识
2019-12-21 20:34:34 29.47MB BCI,BMI
1