内容概要:本文详细介绍了利用MATLAB实现VMD-SSA-BiLSTM模型进行光伏功率预测的方法。首先,通过读取并预处理光伏数据,采用VMD(变分模态分解)将原始功率信号分解为多个较为稳定的模态分量。接着,针对每个分量建立BiLSTM模型,并使用SSA(麻雀搜索算法)优化模型的超参数。实验结果显示,相较于传统的BiLSTM模型,VMD-SSA-BiLSTM模型能够显著提高预测精度,特别是在处理功率突变的情况下表现更为出色。此外,文中还提供了关于如何更换分解算法、优化算法以及调整网络结构的具体指导。 适合人群:具有一定MATLAB编程基础和技术背景的研究人员或工程师,尤其是从事新能源领域数据分析工作的专业人士。 使用场景及目标:适用于需要精确预测光伏功率的应用场景,如电网调度和能源管理系统。主要目标是通过先进的信号处理技术和机器学习算法,提升光伏功率预测的准确性,从而更好地应对天气变化带来的不确定性。 其他说明:文中不仅分享了完整的代码实现细节,还讨论了一些常见的工程部署问题及解决方案,如数据预处理、模型训练效率等。对于希望深入理解并应用于实际项目的读者来说,是一份非常有价值的参考资料。
2025-04-11 20:38:20 688KB
1
本项目使用了word2vec的中文预训练向量 模型分别有BiLSTM-attention和普通的LSTM两种 1、在Config中配置相关参数 2、然后运行DataProcess.py,生成相应的word2id,word2vec等文件 3、运行主函数main.py,得到训练好的模型,并保存模型 4、运行eval.py,读取模型,并得到评价 5、模型准确率平均85%左右
2025-04-08 12:59:45 119.64MB BI-LSTM attention
1
内容概要:本文介绍了如何在MATLAB中实现基于POA(Pelican Optimization Algorithm)优化的卷积双向长短期记忆神经网络(CNN-BiLSTM),用于多输入单输出的时间序列回归预测。该模型通过CNN提取局部特征,BiLSTM处理上下文信息,POA优化超参数,提高了模型的预测性能。文章详细讲解了数据预处理、模型构建、训练和评估的全过程,并提供了完整的代码示例和图形用户界面设计。 适合人群:具备MATLAB编程基础的数据科学家、研究人员和技术爱好者。 使用场景及目标:适用于需要高精度时间序列预测的应用,如金融市场预测、气象数据预测、工业过程监控等。用户可以通过该模型快速搭建并训练高质量的预测模型。 其他说明:未来的研究可以考虑引入更多先进的优化算法,拓展模型的输入输出结构,增强图形用户界面的功能。使用过程中需要注意数据的正常化和防止过拟合的问题。
2025-04-08 09:42:36 45KB 时间序列预测 Matlab 机器学习
1
基于pytorch+bilstm_crf的中文命名实体识别 文件说明 --checkpoints:模型保存的位置 --data:数据位置 --|--cnews:数据集名称 --|--|--raw_data:原始数据存储位置 --|--|--final_data:存储标签、词汇表等 --logs:日志存储位置 --utils:辅助函数存储位置,包含了解码、评价指标、设置随机种子、设置日志等 --config.py:配置文件 --dataset.py:数据转换为pytorch的DataSet --main.py:主运行程序 --main.sh:运行命令 --models.py:模型 --process.py:预处理,主要是处理数据然后转换成DataSet 运行命令 python main.py --data_dir="../data/cnews/final_data/" --log_dir="./logs/" --output_dir="./checkpoints/" --num_tags=33 --seed=123 --gpu_ids="0" --max_seq_len=128 --
2025-03-30 17:14:57 331KB pytorch bilstm
1
"基于CNN-BILSTM-Attention及SAM-Attention机制的深度学习模型:多特征分类预测与效果可视化",CNN-BILSTM-Attention基于卷积神经网络-双向长短期记忆神经网络-空间注意力机制CNN-BILSTM-SAM-Attention多特征分类预测。 多特征输入单输出的二分类及多分类模型。 程序内注释详细替数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。 多边形面积PAM,分类准确率,灵敏度,特异性,曲线下面积AUC,Kappa系数,F_measure。 ,核心关键词: CNN-BILSTM-Attention; 空间注意力机制; 多特征分类预测; MATLAB程序; 分类效果图; 迭代优化图; 混淆矩阵图; 多边形面积; 分类准确率; 灵敏度; 特异性; AUC; Kappa系数; F_measure。,基于多特征输入的CNN-BILSTM-Attention模型及其分类预测效果图优化分析
2025-03-15 17:48:02 327KB gulp
1
脑机接口(BCI)是一项有可能改变世界的前沿技术。脑电图(EEG)运动图像(MI)信号已被广泛用于许多BCI应用中以协助残疾人控制设备或环境、甚至增强人的能力。然而大脑信号解码的有限性能限制了BCI行业的广泛发展。在这篇文章中,我们提出了一个基于注意力的时间卷积网络(ATCNet)用于基于EEG的运动图像分类。该ATCNet模型利用多种技术来提高MI分类的性能,参数数量相对较少。ATCNet采用了科学的机器学习来设计一个特定领域的深度学习模型,具有可解释和可说明的特征,多头自我关注来突出MI-EEG数据中最有价值的特征,时间卷积网络来提取高层次的时间特征,以及基于卷积的滑动特征。颞部卷积网络提取高层次的时间特征,基于卷积的滑动窗口有效地增强了MI-EEG数据。所提出的模型在BCI中的表现优于目前最先进的技术。在IV-2a数据集中,提议的模型优于目前最先进的技术,准确率为85.38%和70.97%。
2025-02-08 18:36:13 8.53MB
1
基于卷积-长短期记忆网络加注意力机制(CNN-LSTM-Attention)的时间序列预测程序,预测精度很高。 可用于做风电功率预测,电力负荷预测等等 标记注释清楚,可直接换数据运行。 代码实现训练与测试精度分析。 这段程序主要是一个基于CNN-LSTM-Attention神经网络的预测模型。下面我将逐步解释程序的功能和运行过程。 1. 导入所需的库: - matplotlib.pyplot:用于绘图 - pandas.DataFrame和pandas.concat:用于数据处理 - sklearn.preprocessing.MinMaxScaler:用于数据归一化 - sklearn.metrics.mean_squared_error和sklearn.metrics.r2_score:用于评估模型性能 - keras:用于构建神经网络模型 - numpy:用于数值计算 - math.sqrt:用于计算平方根 - attention:自定义的注意力机制模块 2. 定义一个函数mae_value(y_true, y_pred)用于计
2024-10-31 10:13:17 288KB 网络 网络 lstm
1
基于卷积神经网络-双向长短期记忆网络(CNN-BILSTM)多维时间序列预测,CNN-BILSTM回归预测,MATLAB代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-10-14 09:49:18 62KB 网络 网络 matlab
1
CNN-LSTM-Attention分类,基于卷积神经网络-长短期记忆网络结合注意力机制(CNN-LSTM-Attention)分类预测 MATLAB语言(要求2020版本以上) 中文注释清楚 非常适合科研小白,替数据集就可以直接使用 多特征输入单输出的二分类及多分类模型。 预测结果图像:迭代优化图,混淆矩阵图等图如下所示
2024-10-10 09:56:10 191KB
1
CNN-LSTM-Attention基于卷积-长短期记忆神经网络结合注意力机制的数据分类预测 Matlab语言 程序已调试好,无需更改代码直接替换Excel即可运行 1.多特征输入,LSTM也可以换成GRU、BiLSTM,Matlab版本要在2020B及以上。 2.特点: [1]卷积神经网络 (CNN):捕捉数据中的局部模式和特征。 [2]长短期记忆网络 (LSTM):处理数据捕捉长期依赖关系。 [3]注意力机制:为模型提供了对关键信息的聚焦能力,从而提高预测的准确度。 3.直接替换Excel数据即可用,注释清晰,适合新手小白 4.附赠测试数据,输入格式如图3所示,可直接运行 5.仅包含模型代码 6.模型只是提供一个衡量数据集精度的方法,因此无法保证替换数据就一定得到您满意的结果
2024-09-12 10:58:49 171KB lstm 神经网络 matlab
1