自然语言处理课程设计资源。自然语言处理课程设计之LSTM模型训练中文语料。使用Bi-LSTM模型训练中文语料库,并实现根据已输入中文词预测下一个中文词。train.py:进行训练的源代码。model.py:模型的类定义代码。cnpre.py:用于保存自定义的Dataset。dotest.ipynb:进行测试的jupyter notebook文件,在可以使用两个模型参数进行句子生成。 自然语言处理是计算机科学和人工智能领域中一个重要的分支,它致力于使计算机能够理解、解释和生成人类语言,从而实现人机之间的有效沟通。随着深度学习技术的发展,长短期记忆网络(LSTM)作为一种特殊的循环神经网络(RNN),因其在处理和预测序列数据方面的出色性能而广泛应用于自然语言处理任务中。LSTM能够捕捉长距离依赖关系,并通过其独特的门控机制解决传统RNN在处理长序列时出现的梯度消失或梯度爆炸问题。 中文语料库的构建对于中文自然语言处理至关重要。由于中文语言的特点,如没有明显词界限、语句结构复杂等,中文处理在很多方面要比英文更加困难。因此,训练一个能够有效理解中文语料的LSTM模型需要精心设计的语料库和模型结构。Bi-LSTM模型是LSTM模型的一种变体,它利用正向和反向两个LSTM进行信息处理,可以在一定程度上提高模型对于文本语义的理解能力。 在本课程设计中,通过使用Bi-LSTM模型训练中文语料库,学生可以学习到如何准备数据集、设计和实现网络结构、以及训练模型的整个流程。学生将学习如何处理中文文本数据,包括分词、去停用词、构建词向量等预处理步骤。这些步骤对于提高模型训练的效果至关重要。 课程设计中包含了多个关键文件,每个文件都承担着不同的角色: - train.py:这是一个Python脚本文件,负责执行模型的训练过程。它会读取准备好的中文语料库,设置模型参数,并运行训练循环,输出训练结果和模型参数。 - model.py:在这个Python文件中,定义了Bi-LSTM模型的类。这包括模型的网络架构,例如输入层、隐藏层、输出层以及如何组织这些层来构建完整的模型结构。这个文件为训练过程提供了模型的蓝图。 - cnpre.py:这个文件用于保存自定义的Dataset类。在PyTorch框架中,Dataset是一个抽象类,需要被继承并实现特定方法来定制数据集。在自然语言处理任务中,这通常包括加载文本数据、分词、编码等预处理步骤。 - dotest.ipynb:这是一个Jupyter Notebook文件,用于测试模型的性能。通过这个交互式的文档,用户可以加载训练好的模型,并使用自定义的句子生成模型参数进行测试。这使得实验者能够直观地看到模型对特定输入的处理效果和生成的句子。 通过本课程设计,学生将掌握如何运用Bi-LSTM模型在中文语料上进行训练和预测,这不仅能够加深对自然语言处理技术的理解,而且能够提高解决实际问题的能力。同时,通过实践操作,学生还能学习到如何调试和优化模型性能,以达到最佳的预测效果。 自然语言处理课程设计之LSTM模型训练中文语料为学生提供了一个实践平台,让他们能够在实际操作中了解和掌握最新的自然语言处理技术和深度学习模型。通过对Bi-LSTM模型的训练和测试,学生不仅能够学会如何处理复杂的中文文本数据,而且能够加深对语言模型及其在自然语言处理中应用的认识。这样的课程设计对于培养学生解决实际问题的能力、提升理论与实践相结合的技能具有重要意义。
2025-04-14 09:42:35 13KB 自然语言处理 NLP Bi-LSTM 中文语料
1
本项目使用了word2vec的中文预训练向量 模型分别有BiLSTM-attention和普通的LSTM两种 1、在Config中配置相关参数 2、然后运行DataProcess.py,生成相应的word2id,word2vec等文件 3、运行主函数main.py,得到训练好的模型,并保存模型 4、运行eval.py,读取模型,并得到评价 5、模型准确率平均85%左右
2025-04-08 12:59:45 119.64MB BI-LSTM attention
1
基于pytorch+bilstm_crf的中文命名实体识别 文件说明 --checkpoints:模型保存的位置 --data:数据位置 --|--cnews:数据集名称 --|--|--raw_data:原始数据存储位置 --|--|--final_data:存储标签、词汇表等 --logs:日志存储位置 --utils:辅助函数存储位置,包含了解码、评价指标、设置随机种子、设置日志等 --config.py:配置文件 --dataset.py:数据转换为pytorch的DataSet --main.py:主运行程序 --main.sh:运行命令 --models.py:模型 --process.py:预处理,主要是处理数据然后转换成DataSet 运行命令 python main.py --data_dir="../data/cnews/final_data/" --log_dir="./logs/" --output_dir="./checkpoints/" --num_tags=33 --seed=123 --gpu_ids="0" --max_seq_len=128 --
2025-03-30 17:14:57 331KB pytorch bilstm
1
多算法模型(BI_LSTM GRU Mamba ekan xgboost)实现功率预测。包括数据处理、特征工程、模型训练、模型推理和结果输出,最终结果以 JSON 格式返回。可灵活替换模块和数据集。实现轻松上手,快速训练快速推理。项目代码如下 data/ │ ├── data_process1.py # 数据预处理代码 ├── data_process.csv # 预处理数据文件 └── 91-Site_1A-Trina_10W.csv # 原始数据文件 inference/ │ ├── myprocessor.py # 推理主代码入口 ├── logs/ # 日志文件路径 │ └── logging.log # 推理日志文件 ├── config/ # 配置文件路径 │ └── config.yaml # 推理配置文件 ├── output/ # 推理输出路径 │ └── ...
2025-03-05 14:03:34 41.05MB 功率预测 机器学习 人工智能
1
BERT+BiLSTM+CRF是一种用于中文命名实体识别(Named Entity Recognition,简称NER)的模型,结合了BERT模型、双向长短时记忆网络(Bidirectional LSTM)和条件随机场(CRF)。 BERT是一种预训练的深度双向变换器模型,具有强大的自然语言处理能力。它能够学习上下文相关的语义表示,对于NLP任务非常有用。 BiLSTM是一种循环神经网络,能够捕捉上下文之间的依赖关系。通过同时考虑前向和后向上下文,BiLSTM能够更好地理解句子中实体的边界和内部结构。 CRF是一种概率图模型,常用于序列标注任务。它能够基于输入序列和概率分布进行标签推断,使得预测的标签序列具有全局一致性。 在BERT+BiLSTM+CRF模型中,首先使用BERT模型提取句子中的特征表示。然后,将这些特征输入到BiLSTM中,通过双向上下文的学习,得到更丰富的句子表示。最后,使用CRF层对各个词的标签进行推断,并输出最终的实体识别结果。 这种模型的优势在于能够充分利用BERT的语义信息和BiLSTM的上下文依赖性,同时通过CRF层对标签进行约束,提高了实体识别的
2024-07-02 15:37:12 801KB python 毕业设计 bert 自然语言处理
BERT+BiLSTM+CRF是一种用于命名实体识别(Named Entity Recognition, NER)的深度学习模型。其中,BERT(Bidirectional Encoder Representations from Transformers)是一种预训练的语言模型,用于捕捉上下文信息;BiLSTM(双向长短时记忆网络)用于处理序列数据;CRF(条件随机场)用于解决标签偏置问题,提高模型的预测准确性。 在训练过程中,需要将输入数据转换为适当的格式,并使用适当的损失函数和优化器进行训练。在推理阶段,可以使用训练好的模型对新的文本进行命名实体识别。
2024-03-08 14:14:58 1.03MB pytorch pytorch 自然语言处理 bert
1
tf2crf 一个简单的CRF层用于tensorflow 2 keras 支持keras遮罩 安装 $ pip install tf2crf 特征 易于使用的带有张量流的CRF层 支持混合精度训练 支持具有DSC丢失的ModelWithCRFLossDSCLoss,这会在数据不平衡的情况下提高f1得分(请参阅) 注意力 在keras_contrib中添加CRF之类的内部内核,因此现在无需在CRF层之前堆叠Dense层。 我已经更改了将损耗函数和精度函数放在CRF层中的以前的方式。 相反,我选择使用ModelWappers(称为jaspersjsun),它更干净,更灵活。 尖端 tensorflow> = 2.1.0建议使用与您的tf版本兼容的最新tensorflow-addons。 例子 import tensorflow as tf from tf2CRF import CRF
2023-04-09 18:10:30 8KB Python
1
近年来,文本的情感分析一直都是自然语言处理领域所研究的热点问题;微博作为一种短文本,用词精炼而简洁,富含观点、倾向和态度。因此,识别微博的情感倾向具有重要的现实意义。提出一种基于SVM和CRF的情感分析方法,使用多种文本特征,包括词、词性、情感词、否定词、程度副词和特殊符号等,并选用不同的特征组合,通过多组实验使情感分析效果最优。实验显示,选用词性、情感词和否定词的特征组合时,SVM模型的正确率达到88.72%,选用情感词、否定词、程度副词和特殊符号的特征组合时,CRF模型的正确率达到9044%。
1
CRF++ 训练中文分词,文件后缀有3标示3列的语料,文件后缀有2,表示2列的语料训练
2023-03-29 20:29:09 2.61MB CRF++ 分词
1
这是笔记配套的代码,详细说明看本人博文,上面有详细介绍
2023-03-17 18:00:15 50KB CRF 机器学习笔记
1