内容概要:本文介绍了一套关于超表面机器学习逆向设计的学习资料,涵盖视频、文档、代码和案例四个部分。视频总时长达20小时以上,详细讲解了从基础概念到复杂模型的应用,配有形象的动画演示。文档部分是对视频内容的补充和总结,便于复习。代码部分提供了多个Python代码片段,用于模拟超表面及其对电磁波的响应,并介绍了如何利用机器学习进行超表面设计。案例部分展示了超表面在天线设计、光学器件优化等领域的具体应用,强调了机器学习在提高设计效率方面的优势。此外,文中还讨论了数据预处理、模型架构选择、损失函数设计等方面的技术细节,如使用残差连接、注意力机制、对抗训练等方法来提升模型性能。 适合人群:对超表面和机器学习感兴趣的科研人员、工程师及学生。 使用场景及目标:帮助用户快速掌握超表面机器学习逆向设计的方法和技术,应用于实际项目中,提高设计效率和准确性。 其他说明:文中提到的一些技术和方法不仅适用于超表面设计,也可为其他相关领域的研究提供参考。
2025-11-03 19:54:06 495KB
1
【因子选股】在量化金融领域,因子选股是一种利用特定经济变量(因子)来筛选具有潜在超额收益的股票的投资策略。本研究重点探讨的是业绩超预期类因子,即上市公司实际业绩与市场预期之间的差异,对股票价格的影响。 【业绩超预期】投资者通常会对公司的业绩有预期,当实际业绩超过市场预期时,股票可能会因投资者的乐观情绪产生正向的异常收益,反之则可能导致负向的异常收益。这种现象被称为盈利公告的价格漂移(Price-Earnings Announcement Drift,简称PEAD)。研究显示,PEAD在全球多个市场普遍存在。 【因子构建】业绩超预期的度量通常通过预期外净利润(Surprise Earnings,SUE)和预期外营业收入(Surprise Revenue,SUR)来衡量。在本研究中,采用季节性随机游走模型预测净利润和营业收入,然后计算标准化的SUE和SUR。模型分为带漂移项和不带漂移项两种,分别得到SUE0、SUE1、SUR0和SUR1四个业绩超预期指标。 【事件研究】事件研究法用于验证业绩超预期因子的收益特征。研究表明,A股市场中,业绩超预期的股票在公告后存在持续约3-4个月的正向异常收益,且收益衰减不明显。基于这些因子构建的多空策略,如SUE0,展现出良好的选股效果,RankIC均值达到4.02%,IC_IR(信息比率)高达3.49,月均收益1.53%,回撤控制在7.27%以内。 【因子相关性】业绩超预期因子与成长因子存在较高的相关性,这意味着它们可能包含相似信息。通过回归分析,去除业绩超预期因子后,成长因子的选股能力减弱;相反,即使在剔除包括成长因子在内的其他大类因子后,业绩超预期因子的RankIC均值仍能保持在3.93%,IC_IR提升至3.79,显示其独立的选股价值。 【应用实战】在指数增强策略中,使用业绩超预期因子替代成长因子,能够在维持风险和换手率相近的情况下提升组合的业绩。例如,增强中证500组合的年化对冲收益可提升4.37%,同时跟踪误差和最大回撤控制在较小范围内,信息比从2.73提升至3.48,显示了业绩超预期因子的有效性。 【风险提示】尽管业绩超预期因子在实际应用中表现出色,但仍需注意量化模型可能存在的失效风险,以及市场极端环境可能带来的冲击。 业绩超预期类因子是量化投资中的重要工具,能够帮助投资者识别具有超额收益潜力的股票,并在构建投资组合时提供依据。然而,有效利用这些因子需要对市场动态有深入理解,并且需要不断调整策略以应对市场变化和潜在风险。
2025-10-30 14:35:44 2.52MB 量化金融
1
利用CST微波工作室进行超表面仿真,实现从线极化到圆极化的极化转换器的设计与优化过程。首先,通过建立简单的十字形金属贴片模型并设定材料参数和边界条件,确保仿真环境符合实际需求。接着,通过VBA脚本优化X和Y方向的相位差,使其达到90度,从而实现线极化向圆极化的转变。随后,使用Python对S参数进行后处理,绘制轴比曲线图,验证极化转换效果。最后,通过Matlab进一步确认圆极化的旋转方向,确保仿真结果与文献一致。 适合人群:从事电磁仿真、天线设计以及超表面研究的专业技术人员。 使用场景及目标:适用于需要深入了解极化转换机制及其仿真的研究人员和技术人员,帮助他们掌握CST仿真工具的具体应用方法,提高仿真精度和效率。 其他说明:文中还特别提到网格划分对仿真收敛速度的影响,建议采用六边形网格以加快收敛。
2025-10-30 11:16:27 319KB
1
内容概要:本文详细介绍了利用CST微波工作室进行超表面仿真,将线极化波转化为圆极化波的技术实现过程。首先,构建了一个简单的十字形金属贴片作为超表面单元模型,设置了金属层和基板的具体参数。接着,通过调整X和Y方向的相位差达到90度来实现极化转换,并使用VBA脚本进行参数优化。最终,在12.5GHz频率处实现了低于3dB的轴比,验证了圆极化的成功转换。此外,还讨论了网格划分对仿真的影响,指出六边形网格相比矩形网格能更快收敛。 适合人群:从事电磁仿真、天线设计以及超表面研究的专业技术人员。 使用场景及目标:适用于需要深入了解线极化转圆极化技术原理及其实际应用的研究人员和技术开发者。目标是掌握CST仿真工具的操作技巧,理解极化转换的关键技术和优化方法。 其他说明:文中提供了详细的建模步骤、参数设置和代码片段,有助于读者快速上手并复现实验结果。同时提醒注意网格划分的选择,以提高仿真效率。
2025-10-30 11:14:57 286KB
1
### 一种超宽带脉冲信号发生器的设计 #### 摘要 本文介绍了一种新型的超宽带脉冲信号发生器的设计方案。该方案利用并联阶跃恢复二极管(Step Recovery Diode, SRD)产生超宽带的窄脉冲信号。这种微带结构电路能够生成宽度为1ns、重复周期为100MHz的窄脉冲信号,峰值电压可达10.44V。文中深入探讨了电路的工作原理和设计方法,并特别关注了偏置电路与匹配电路的设计细节。实验结果表明,该电路产生的脉冲信号具有良好的波形特性,脉冲尾部振荡非常轻微,适用于超宽带通信系统。 #### 关键词解析 - **脉冲信号发生器**:指能够产生特定形式脉冲信号的电子设备。 - **超宽带**:指的是频带宽度极大的信号传输技术,通常是指信号的相对带宽超过20%或者绝对带宽超过500MHz。 - **窄脉冲**:脉冲宽度极短的信号,通常在纳秒级别。 - **阶跃恢复二极管(SRD)**:一种特殊的二极管,能够在电流快速变化时产生短暂的反向电压脉冲,常用于脉冲信号的生成。 #### 设计原理与方法 ##### 阶跃恢复二极管(SRD) 阶跃恢复二极管是一种利用PN结在反向恢复过程中产生瞬态脉冲的元件。当通过阶跃恢复二极管的电流从正向突然转变为反向时,二极管会经历一个快速恢复过程,在这个过程中会产生一个非常短的反向电压脉冲,这就是脉冲信号的发生基础。 ##### 微带结构电路 本文中的脉冲信号发生器采用了微带线技术。微带线是一种常见的传输线形式,由一条金属导体条带置于介质衬底上方,并且下方有接地平面。这种结构可以有效传输高频信号,并且便于集成到各种电路中。 ##### 偏置电路与匹配电路 - **偏置电路**:用于确保阶跃恢复二极管处于适当的工作状态,以便在输入信号的作用下能够产生所需的脉冲信号。 - **匹配电路**:用于优化信号源与负载之间的阻抗匹配,减少信号反射,提高能量传输效率。 #### 测量结果分析 实验结果表明,设计的电路成功地生成了宽度为1ns、重复周期为100MHz的窄脉冲信号,峰值电压达到了10.44V。这些脉冲信号具有良好的波形特性,脉冲尾部几乎没有明显的振荡现象,这意味着信号的质量非常高,非常适合用于超宽带通信系统中。 #### 结论 本文提出的一种基于并联阶跃恢复二极管的超宽带脉冲信号发生器设计,不仅能够生成高质量的窄脉冲信号,而且具有较高的重复频率和较大的峰值电压。这对于提高超宽带通信系统的性能具有重要意义。未来的研究方向可能包括进一步提高脉冲信号的稳定性和可调节性,以及探索更多应用场景的可能性。
1
实时偏振成像的超构透镜模型:硅纳米柱构成的超表面FDTD仿真及偏振解耦合研究,全介质超构透镜模型实现偏振成像:实时分离聚焦与偏振信息解码,偏振成像 超构透镜模型 超表面 FDTD仿真 复现lunwen:2019年 APL Midinfrared real-time polarization imaging with all-dielectric metasurfaces lunwen介绍:全介质实时偏振聚焦成像超构透镜模型,可以实现X Y RCP LCP四个偏振态的实时分离和聚焦的功能,通过四个强度的计算可以得到入射光场的偏振信息。 超构透镜由硅纳米柱构成,通过偏振复用和空间复用原理同时调控四个偏振态的光场相应。 案例内容:主要包括硅纳米柱的单元结构仿真、相位和透射率的参数化扫描,偏振复用超构透镜的偏振解耦合相位计算代码,空间复用的超构透镜模型建模脚本,以及多偏振聚焦的超构透镜模型,和对应的远场电场分布计算; 案例包括fdtd模型、fdtd建模脚本、Matlab计算相位代码和模型仿真复现结果,以及一份word教程,超构透镜的偏振复用和解耦合相位计算代码可用于任意偏振调控设计,具备可拓展
2025-10-27 15:30:35 9.56MB paas
1
内容概要:本文详细介绍了在COMSOL中实现高斯光束、超高斯光束和贝塞尔光束的方法及其优化技巧。首先讨论了高斯光束的建模,指出常见的错误如端口设置不当,并提供了正确的参数配置和边界条件设定方法。接着探讨了超高斯光束的构建,强调了指数项调整和网格细化的重要性。对于贝塞尔光束,则讲解了如何利用贝塞尔函数库进行轴向相位调制,并解决了可能出现的边界反射问题。此外,还分享了一些实用的调试技巧,如避免离散化误差、优化网格划分以及处理数值稳定性等问题。 适合人群:从事光学仿真研究的专业人士,尤其是使用COMSOL进行光束建模的研究人员和技术人员。 使用场景及目标:帮助用户掌握COMSOL中不同类型光束的精确建模方法,提高仿真精度,减少因参数设置不当而导致的误差。适用于科研项目、教学演示以及工业应用中的复杂光场模拟。 其他说明:文中提到的技术细节和实践经验有助于提升用户的建模能力,同时也提醒用户关注一些容易忽视的关键点,如边界条件、网格密度等。
2025-10-27 15:22:14 324KB
1
内容概要:本文探讨了如何使用遗传算法优化编码序列,以实现超表面雷达横截面(RCS)的缩减和最佳漫反射效果。文中详细介绍了遗传算法的基本原理及其在编码序列优化中的应用,分别用MATLAB和Python实现了优化过程,并展示了三维仿真结果和二维能量图。同时,文章还讲解了如何在CST软件中观察超表面的RCS缩减效果,以及考虑了容差性设计和远场波形观察,确保优化后的编码序列能够在实际应用中表现出色。 适合人群:从事雷达与天线设计的研究人员和技术人员,尤其是对遗传算法和超表面技术感兴趣的读者。 使用场景及目标:适用于需要降低雷达横截面的应用场景,如军事隐身技术和民用通信设备。目标是通过优化编码序列,实现超表面的最佳RCS缩减和漫反射效果。 其他说明:本文不仅提供了详细的理论背景,还包括具体的实现步骤和代码示例,帮助读者更好地理解和应用遗传算法优化编码序列的技术。
2025-10-25 17:58:27 833KB
1
遗传算法在编码超表面RCS(雷达散射截面)缩减中的应用及其最佳漫反射效果的实现方法。文中阐述了遗传算法的基本原理,即通过选择、交叉和变异等操作来优化编码序列,从而使得超表面在雷达波照射下达到最佳漫反射效果。同时,提供了MATLAB和Python两种编程环境的具体实现步骤,包括定义问题、初始化种群、选择操作、交叉操作、变异操作以及评估函数等。此外,还展示了三维仿真结果和二维能量图,帮助理解优化效果,并介绍了如何在CST电磁仿真软件中验证超表面的RCS缩减效果。最后指出遗传算法的优点在于快速出结果、容差性高,适用于不同尺寸的编码序列优化。 适合人群:对电磁学、天线设计、雷达隐身等领域感兴趣的科研人员和技术开发者,尤其是熟悉MATLAB和Python编程的人士。 使用场景及目标:①研究编码超表面在天线、雷达隐身等方面的应用;②利用遗传算法优化编码序列,提高超表面的RCS缩减性能;③掌握MATLAB和Python环境下遗传算法的具体实现方法;④通过仿真软件验证优化效果。 其他说明:本文不仅提供理论指导,还附带详细的编程实现步骤和仿真结果,有助于读者深入理解和实践遗传算法在超表面RCS缩减中的应用。
2025-10-25 17:57:13 918KB
1
内容概要:本文详细介绍了如何使用遗传算法优化编码序列来实现编码超表面的雷达截面(RCS)缩减,从而达到天线和雷达隐身的效果。文中提供了MATLAB和Python两种编程语言的具体实现代码,涵盖了从参数设置、种群初始化、适应度计算、选择、交叉、变异到最后获得最佳编码序列的完整流程。此外,还展示了如何通过三维仿真和二维能量图来呈现优化结果,并解释了在CST软件中验证超表面RCS缩减效果的方法。 适合人群:从事电磁学、天线设计、雷达技术和信号处理的研究人员和技术人员,尤其是对遗传算法及其应用感兴趣的科研工作者。 使用场景及目标:适用于需要降低雷达截面的应用场合,如军事装备隐身、民用通信设备抗干扰等。目标是通过优化编码序列,使超表面能够在特定频段内有效减少被探测的可能性,提高系统的隐蔽性和安全性。 其他说明:文中不仅提供了详细的代码实现步骤,还包括了对遗传算法原理的简要介绍,帮助读者更好地理解和应用该技术。同时,通过具体的案例演示,使得理论与实践相结合,便于读者掌握和应用。
2025-10-25 17:56:21 1.12MB
1