本文设计了一个自我监督的注意模块,该模块可以识别感兴趣的显着区域,而无需明确的手工标记注释。在现有的以CNNs为特征提取器的深度RL方法中,可以直接即插即用。 注意模块学习的是前景注意掩码,而不是预定义的关键点数量。
2022-10-12 17:06:59 7.33MB 自注意力
1
Mentor_POWER-AWARE-通过集成信号完整性和电源完整性仿真来确保 DDRX 设计的可靠性
2022-10-09 14:56:17 3.8MB MentorPOWERAWARE 通过 集成 信号完整性
1
CVPR 2022 Image Dehazing Transformer with Transmission-Aware 3D Position Embedding 源代码,很有学习价值,大佬任文琦团队的最新去雾杰作,从3D定位的角度去思考去雾。CVPR 2022 Image Dehazing Transformer with Transmission-Aware 3D Position Embedding 源代码,很有学习价值,大佬任文琦团队的最新去雾杰作,从3D定位的角度去思考去雾。CVPR 2022 Image Dehazing Transformer with Transmission-Aware 3D Position Embedding 源代码,很有学习价值,大佬任文琦团队的最新去雾杰作,从3D定位的角度去思考去雾。
2022-09-24 16:06:04 8.9MB 代码 图像去雾 去雾源码
1
Viewport-Aware Dynamic 360-Degree Video Segment Categorization阅读报告
2022-09-14 13:05:38 1.13MB
1
随着Web服务的指数级增长,建议使用各种协作QoS预测方法对服务质量(QoS)进行有效评估,并帮助用户选择合适的服务。 考虑到服务调用的复杂时空上下文的影响并在预测过程中利用它们的特征,仍然是一项技术挑战。 为此,我们提出了两个通用的时空上下文感知协作神经模型(STCA-1和STCA-2),通过考虑服务端和用户端的调用时间和多个空间特征来进行QoS预测。 我们提出的模型利用层次神经网络来实现原始特征的嵌入表达,二阶特征的生成,一阶和二阶特征的融合,空间特征之间的交互以及时态特征的逐层化。 特别地,引入注意力机制来自动地将权重分配给空间特征,并实现在特征融合中的判别性应用。。在大规模数据集上的实验证明了该方法的有效性:(1)。预测误差可以显着与基线方法相比尤其如此。在稀疏训练数据的情况下,我们的模型在MAE和NMAE方面的性能提高了约10.9–21.0%,在RMSE方面的性能提高了2.4–7.8%。 (2)注意机制使我们能够更合理地对特征融合的有效性做出直观的解释,从而增强了预测模型的可解释性。
2022-05-24 14:23:08 384KB QoS prediction Spatio-temporal context-aware
1
本文件是论文《Tag-Aware Personalized Recommendation Using a Deep-Semantic Similarity Model with Negative Sampling》的原文翻译,是我通过 Google 翻译及我自己的理解翻译而来的。在翻译的内容中有很多英文标记的地方,便于结合原文进行理解。感谢论文原作者的辛苦实践,/bq,如有侵权,请联系我删除,谢谢~/bq。 [摘要] With the rapid growth of social tagging systems, many efforts have been put on tag-aware personalized recommendation. However, due to uncontrolled vocabularies, social tags are usually redundant, sparse, and ambiguous. In this paper, we propose a deep neural network approach to solve this problem by mapping both the tag-based user and item profiles to an abstract deep feature space, where the deepsemantic similarities between users and their target items (resp., irrelevant items) are maximized (resp., minimized). Due to huge numbers of online items, the training of this model is usually computationally expensive in the real-world context. Therefore, we introduce negative sampling, which significantly increases the model’s training efficiency (109.6 times quicker) and ensures the scalability in practice. Experimental results show that our model can significantly outperform the state-of-the-art baselines in tag-aware personalized recommendation: e.g., its mean reciprocal rank is between 5.7 and 16.5 times better than the baselines.
2022-05-15 10:33:23 295KB 推荐系统 negative samplin
1
风暴弹性调度器 待定... 编译 mvn 包 安装(确保相应地更改 STORMDIR) ./install.sh
2022-05-12 19:10:28 707KB Java
1
判别学习、恢复学习和对抗性学习已被证明对计算机视觉和医学成像中的自监督学习方案有益。然而,现有的努力,忽略了它们在三元设置中相互之间的协同作用,我们认为,这可以显著地有利于深度语义表示学习。为了实现这一愿景,我们开发了DiRA,这是第一个将判别学习、恢复学习和对抗学习统一起来的框架,以协作的方式从未标记的医学图像中收集互补的视觉信息,用于细粒度语义表示学习。我们的广泛实验表明,DiRA (1) 鼓励三种学习成分之间的协作学习,从而在器官、疾病和模态中产生更一般化的表征; (2) 优于完全监督的ImageNet模型,并在小数据领域增强鲁棒性,减少多个医学成像应用程序的注释成本; (3) 学习细粒度语义表示,仅通过图像级标注即可实现病灶的准确定位 ;(4) 增强了最先进的修复方法,揭示了DiRA是统一表征学习的一般机制。所有代码和预训练的模型都可以
2022-04-27 09:14:50 1.15MB 学习 计算机视觉 文档资料 深度学习
1
Wi-Fi_Aware_Specification_v3.2
2022-04-11 14:07:35 7.23MB wifi
1
Rethinking Anticipation Tasks: Uncertainty-aware Anticipation of Sparse Surgical Instrument Usage for Context-aware Assistance的个人涂鸦版本
2022-04-06 03:12:08 8.54MB 深度学习 论文阅读
1