用法: 奖品收集斯坦纳树问题 (PCST) 是在无向图 G(V,E) 中找到一棵树 T = (V',E') 来最大化利润 (T),它被定义为所有节点的总和 -解决方案中的奖品减去建立网络所需的边的成本。 使用 T = FindTree(G,vp) 开始计算。 函数 PCTSP(G,vp,r) 试图找到一个最优的奖品收集 steiner 树,其根节点为 r。 FindTree 使用不同的顶点作为根多次运行 PCTSP 以找到最佳的奖品收集 steiner 树。 输入格式: 程序的输入图由矩阵 G 和向量 vp 表示。 假设图中有 n 个顶点。 顶点由 1、2、3、...、n 表示。 那么 G 是一个 n × n 矩阵。 如果 G(i,j) 是 NaN 或负数,则没有边连接顶点 i 和顶点 j。 否则,它意味着edge(i,j)的代价。 向量 vp 存储顶点的分数。 vp(i) 是顶点 i
2024-12-10 10:10:26 4KB matlab
1
Blasius方程全局收敛与封闭的解析解及其在应用中的近似,郑俊,,本文首次给出了Blasius方程在全局收敛且封闭的解析解。我们发现方程的解可以表达为两个幂级数,解的收敛条件可以获得未知函数二阶导�
2024-03-02 11:19:52 1.14MB 首发论文
1
拉格朗日近似 作为数字信号处理课程项目的一部分完成的工作。 拉格朗日插值 最优多项式逼近 范围缩小 子区间划分 参考 第 26 章,
2023-04-05 16:00:22 2KB MATLAB
1
这里是 ShowMeAI 持续分享的【开源eBook】系列!内容覆盖机器学习、深度学习、数据科学、数据分析、大数据、Keras、TensorFlow、PyTorch、强化学习、数学基础等各个方向。整理自各平台的原作者公开分享(审核大大请放手) ◉ 简介:《The Design of Approximation Algorithms》整理自哥本哈根大学同名课程的教学资料。书籍围绕近似算法的几个核心算法技术展开,包括贪婪和局部搜索算法、动态编程、线性和半无限编程以及随机化。资料第一部分的每一章都专门讨论一种算法技术,然后将其应用于几个不同的问题。第二部分重温了这些技术,但对它们进行了更复杂的处理。 ◉ 目录: 贪婪算法和局部搜索 舍入数据和动态编程 线性程序和确定性舍入 线性程序的随机抽样和随机舍入 半定约程序的随机舍入 原始二元法 多路切割问题 随机抽样、优先抽样 心数估计 多数据集的总结 有序数据的总结 乘法权重 在线算法
2022-12-29 18:25:28 2.3MB 人工智能 算法 机器学习 深度学习
1
Approximation Algorithms for K-Modes Clustering,何增友,,In this paper, we study clustering with respect to the k-modes objective function, a natural formulation of clustering for categorical data. One of the main contributions of this p
2022-12-28 15:33:15 223KB Clustering Categorical Data K-Means
1
GBD的出处论文,看到好多人10积分下载,真的奸商啊。这里直接最低积分分享
2022-12-01 12:55:38 2MB 机器学习 数据挖掘 人工智能 论文
1
网上找的关于随即逼近算法(Stochastic Approximation Algorithms)的资料。
2022-11-18 14:29:55 762KB StochasticAppro
1
strip packing 问题的外文文献,欢迎下载学习研究~
2022-10-06 19:35:03 119KB strip packing
1
Hubbard模型中超导计算的无规相近似方法,张力达,杨帆,自旋和电荷涨落导致的超导电性可以出现在电子-电子相互作用系统中。将线性化间隙方程作为本征值问题求解,可以得到系统的超导临界�
2022-08-26 22:30:16 955KB 首发论文
1
论文的word格式 原论文地址:http://proceedings.mlr.press/v139/amani21a/amani21a.pdf 翻译:https://blog.csdn.net/baishuiniyaonulia/article/details/125504660,https://blog.csdn.net/baishuiniyaonulia/article/details/125572881
2022-07-02 16:08:43 835KB word 翻译 论文 强化学习
1