摘要:通过使用Achronix Speedster7t FPGA中的机器学习加速器MLP72,开发人员可以轻松选择浮点/定点格式和多种位宽,或快速应用块浮点,并通过内部级联可以达到理想性能。  神经网络架构中的  之一就是卷积层,卷积的  基本操作就是点积。向量乘法的结果是向量的每个元素的总和相乘在一起,通常称之为点积。此向量乘法如下所示:  图 1 点积操作  该总和S由每个矢量元素的总和相乘而成,因此  本文讲述的是使用FP16格式的点积运算实例,展示了MLP72支持的数字类型和乘数的范围。  此设计实现了同时处理8对FP16输入的点积。该设计包含四个MLP72,使用MLP内部的级联路径连
1
. 概述  得益于大数据的兴起以及算力的快速提升,机器学习技术在近年取得了革命性的发展。在图像分类、语音识别、自然语言处理等机器学习任务中,数据为大小维度确定且排列有序的欧氏(Euclidean)数据。然而,越来越多的现实场景中,数据是以图(Graph)这种复杂的非欧氏数据来表示的。Graph不但包含数据,也包含数据之间的依赖关系,比如社交网络、蛋白质分子结构、电商平台客户数据等等。数据复杂度的提升,对传统的机器学习算法设计以及其实现技术带来了严峻的挑战。在此背景之下,诸多基于Graph的新型机器学习算法—GNN(图神经网络),在学术界和产业界不断的涌现出来。  GNN对算力和存储器的要求非常
1