GM(1,1)与ARIMA模型在中国一次能源消费量预测中的比较,袁潮清,,本文分析了GM(1,1)模型和AR(1)、ARMA(1,q)模型的联系,认为GM(1,1) 模型可以实现对他们的近似表征。并分别用ARIMA(2,2,1)和GM(1
2024-02-28 15:51:22 649KB 首发论文
1
一、时间序列模型的基本概念及其适用性 二、随机时间序列模型的平稳性条件 三、随机时间序列模型的识别 四、随机时间序列模型的估计 五、随机时间序列模型的检验 69页的PPT讲义
2023-05-16 14:30:01 550KB ARIMA 时间序列 吉林大学
1
时间序列ARIMA模型的销量预测
2023-04-12 20:19:19 6KB 预测模型 Python
1
 利用加速度信号测量位移是油田抽油井光杆位移测量的主要方法,而加速度信号的随机噪声和趋势项是影响测量精度的主要因素,本文提出了一种基于学习的实时消噪和剔除趋势项方法。学习时先获取一段时间的加速度信号,再通过时间序列分析技术得出ARIMA模型及其参数,最后基于FFT变换的Rife-Jane频率估计方法求出加速度信号的周期;在线实时消噪和剔除趋势项方法是基于学习阶段所得模型参数,运用卡尔曼滤波技术消除加速度信号随机噪声;按周期两次积分得到光杆位移,用加窗递推最小二乘法在线消除趋势项。通过抽油机半实物仿真平台测试和分析加速度信号,结果表明,该方法有效地去除了加速度信号中的噪声和趋势项,极大地提高了位移的测量精度。
1
如今,我国的经济、军事、政治、文化建设得到了迅速的发展,同时,快速的经济发展不可避免地带来了环境问题。近些年来,中国正在尽力解决空气污染问题,虽然已取得初步成效,但与国际上相比,空气质量问题依然严峻。 PM2.5 是当前我国大部分城市面临的首要大气环境问题。本文从2014年1月到2020年12月对廊坊市的PM2.5进行时间序列分析与预测,利用MATLAB软件建立Arima模型,来预测2021年12个月份的PM2.5浓度。
2023-02-08 15:21:14 252KB matlab
1
概要:用季节性ARIMA模型分析和预测我国的进出口总额,有代码和数据及自己写的论文(包含摘要目录等) 论文摘要:进出口总额是反映我国对外贸易的重要指标之一,为探索我国的进出口金额变化情况,选取我国1994-2021年进出口总额的月度历史数据为研究样本,采用时间序列检验方法对其进行了相关分析,建立相应的季节性ARIMA模型,运用所建模型对2023年进出口总额进行预测。研究结果表明:我国月度进出口贸易总额时间序列预测模型表现出明显季度性变化特征,通过模型精度对比,季节性ARIMA模型预测精度较高,结合预测结果可用于有关外贸等方面政策的制定,推动我国经济的进一步发展。
1
网格搜索ARIMA模型超参数_两个案例python实现源码&数据 1、评估给定订单的ARIMA模型(p,d,q) 2、评估ARIMA模型的p,d和q值的组合
1.数据预览 2.预览一下数据的自相关图 3.预览残差图和残差的密度分布图 4.滑动窗口预测ARIMA模型
2022-12-02 14:29:44 3KB ARIMA 时间序列预测 单变量
arima模型
2022-11-29 14:32:15 240KB python
1
ARIMA模型-matlab代码,可以根据自己的实际情况进行参数调节,实现所需要的效果。
2022-11-24 16:26:02 2KB ARIMA模型 matlab ARIMA 人工智能