ARIMA模型是一种广泛应用的时间序列预测模型,它结合了自回归(AR)和移动平均(MA)的概念,具有较好的灵活性和准确性。本章将介绍一个实战案例,利用Python编程语言实现了ARIMA模型并进行预测。通过这个案例,我们将深入了解ARIMA模型的构建过程和关键步骤,并学习如何使用Python中的相关库来进行模型训练和预测。在案例中,我们将使用一组客服的接线量数据作为实验对象。通过分析这些数据,我们将探索数据的特征和规律,进行平稳性检验和差分操作,然后通过自相关和偏自相关图来选择合适的ARIMA模型参数。RIMA模型是一种广泛应用的时间序列预测模型,它结合了自回归(AR)和移动平均(MA)的概念,具有较好的灵活性和准确性。在本篇博客中,我们将深入探讨ARIMA模型的实战应用,并通过Python进行模型的实现和分析。 我们的实战案例基于一组客服接线量的数据。首先,我们对数据进行了详细的探索性分析,以揭示其内在的时间序列特性。对于非平稳的数据,我们使用差分操作使其平稳,以便进行后续的建模和预测。 在模型参数的选择上,我们使用了自相关图(ACF)和偏自相关图(PACF)来帮助确定ARIMA
2024-04-16 10:53:43 5KB 机器学习 ARIMA
1
python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果
2023-04-06 19:49:39 144KB python ARIMA
1
1.数据预览 2.预览一下数据的自相关图 3.预览残差图和残差的密度分布图 4.滑动窗口预测ARIMA模型
2022-12-02 14:29:44 3KB ARIMA 时间序列预测 单变量
基于MATLAB实现ARIMA时间序列预测源码+全部数据.zip本程序基于MATLAB的armax函数实现arima时间序列预测; 实现了模型趋势分析、序列差分、序列平稳化、AIC准则模型参数识别与定阶、预测结果与误差分析过程,逻辑清晰。 基于MATLAB实现ARIMA时间序列预测源码+全部数据.zip本程序基于MATLAB的armax函数实现arima时间序列预测; 实现了模型趋势分析、序列差分、序列平稳化、AIC准则模型参数识别与定阶、预测结果与误差分析过程,逻辑清晰。 基于MATLAB实现ARIMA时间序列预测源码+全部数据.zip本程序基于MATLAB的armax函数实现arima时间序列预测; 实现了模型趋势分析、序列差分、序列平稳化、AIC准则模型参数识别与定阶、预测结果与误差分析过程,逻辑清晰。 基于MATLAB实现ARIMA时间序列预测源码+全部数据.zip本程序基于MATLAB的armax函数实现arima时间序列预测; 实现了模型趋势分析、序列差分、序列平稳化、AIC准则模型参数识别与定阶、预测结果与误差分析过程,逻辑清晰。
时序预测 | MATLAB实现ARIMA时间序列预测(完整源码和数据) 本程序基于MATLAB的armax函数实现arima时间序列预测; 实现了模型趋势分析、序列差分、序列平稳化、AIC准则模型参数识别与定阶、预测结果与误差分析过程,逻辑清晰。 数据为144个月的数据集,周期为一年,最终实现历史数据的预测和未来两年数据的预报!
时序预测 | MATLAB实现ARIMA时间序列预测(完整源码和数据) 本程序基于MATLAB的armax函数实现arima时间序列预测; 实现了模型趋势分析、序列差分、序列平稳化、AIC准则模型参数识别与定阶、预测结果与误差分析过程,逻辑清晰。 数据为144个月的数据集,周期为一年,最终实现历史数据的预测和未来两年数据的预报!
2022-05-05 09:09:29 2KB ARIMA 时间序列
MATLAB实现ARIMA时间序列预测数据集
2021-05-08 20:02:12 416B ARIMA 时间序列 数据集
1
在matlab中实现ARIMA时间序列预测。函数形式如下: function [result] = ARIMA_algorithm(data, Periodicity, ACF_P, PACF_Q, n) 其中data为预测所用的数据,为一维列向量;Periodicity为数据的周期;ACF_P和PACF_Q分别是p值和q值;n为想要预测的数据的个数。所返回的结果result是预测出来的数据(一维列向量),同时会画出预测数据的折线图。
2019-12-21 20:36:48 2KB matlab ARIMA
1
使用Python、arima进行时间序列预测 (1)判断时间序列是否是平稳白噪声序列,若不是进行平稳化 (2)本实例数据带有周期性,因此先进行一阶差分,再进行144步差分 (3)看差分序列的自相关图和偏自相关图,差分后的而序列为平稳序列 (4)模型定阶,根据aic,bic,hqic (5)预测,确定模型后预测 (5)还原,由于预测时用的差分序列,得到的预测值为差分序列的预测值,需要将其还原
2019-12-21 19:46:38 12KB arima 时间序列预测 python
1