基于spring-ai框架实现的RAG增强检索,及ai对话demo后端服务源码。 Demo中演示了,根据本地客户宠物的洗澡剪毛记录,和剪毛和洗澡间隔规则,询问ai,哪些宠物应该剪毛或洗澡了。 运行前准备工作: 1.Java运行环境:openjdk22 2.安装ollama 3.pull大模型nomic-embed-text,wangshenzhi/llama3-8b-chinese-chat-ollama-q4 详细运行步骤,请参考以下文章:https://blog.csdn.net/weixin_42545951/article/details/140129688
2025-06-20 00:02:39 27KB spring 人工智能
1
为了降低带式输送机传统恒定功率工作模式下的功耗,采用图像处理的方法对带式输送机实时煤炭量检测技术进行了研究,并设计了基于图像处理的煤炭量AI识别系统。研究表明:该系统可以实现常规煤量检测的需求,并能够配合输送带进行功率调节,同时具有体积小、成本低、准确度高、安装便捷的优点,为当前的煤量检测提供了新的自动化解决方案。
2025-06-19 17:17:28 995KB 煤炭输送 图像处理
1
Dify表结构写入知识库是AI技术在数据管理领域的一种应用。AI Dify指的是利用人工智能技术优化和自动化数据处理流程,其中表结构的写入是关键步骤。在这一过程中,系统通过智能分析,将原始数据结构化,以适应特定知识库的格式要求。 知识库的构建需要明确的数据表结构。表结构写入的过程,就是根据知识库的规范,将分散的数据整理成有序的表格形式。这不仅需要对数据的性质有深入理解,还要对知识库的要求有精准把握。例如,如果知识库需要处理的是结构化数据,那么就要确保数据表中的每一列数据类型一致,且相互之间有明确的逻辑关系。 利用AI进行表结构的写入,可以极大提升数据处理的效率和准确性。AI算法能够自动识别数据中的模式,进而预测和构建出合理的数据模型。比如,通过机器学习技术,AI系统能够理解数据的上下文含义,并将其映射到知识库中相应的条目上。这比人工处理方式更为高效,尤其是面对大数据量时。 在Dify表结构写入知识库的过程中,还需要考虑到数据的完整性、一致性和准确性。数据完整性确保所有需要的信息都被记录;一致性指不同数据源之间没有冲突;准确性是指数据表中的信息反映了真实的情况。AI系统通过内置的算法,比如一致性检查、数据清洗、异常值检测等,来保证数据的质量。 此外,表结构的写入还涉及到数据的连接和整合。对于知识库而言,通常需要从多个数据源提取信息,这就要求数据表之间能够互相引用和连接,形成统一的数据视图。AI技术在这里可以发挥出强大的数据融合能力,通过识别和匹配不同数据源的相似信息,实现高效的数据整合。 Dify表结构写入知识库也对数据的安全性有很高的要求。在AI的辅助下,知识库的访问控制和数据加密机制可以得到加强,确保数据只对授权用户开放,以及在传输和存储过程中不会遭到非法访问或篡改。 Dify表结构写入知识库通过人工智能技术,不仅提高了数据处理的自动化和智能化水平,还增强了数据的准确性、安全性和可维护性。这些是构建高效、可靠知识库体系的基础,为各行各业提供了坚实的数据支撑。未来随着AI技术的进一步发展,表结构写入知识库的效率和智能化程度还将继续提升,成为数据管理领域不可或缺的一部分。
2025-06-19 16:53:11 11KB AI
1
LangChain技术是一种基于大语言模型开发AI应用的框架,提供了丰富的工具和生态,使得AI应用的开发变得更加高效。本书《LangChain技术解密:构建大模型应用的全景指南》由王浩帆编著,全面介绍了LangChain的开发环境搭建、模型、提示、数据连接、链、记忆、代理、回调及周边生态等核心内容。 书中特别强调了模型的输入与输出(Model I/O)、检索增强生成(RAG)技术、代理(Agent)技术等关键知识点。并且,为了使读者能够更好地理解和运用LangChain技术,作者还设计了三个实践案例:基于Streamlit实现聊天机器人、基于Chainlit实现PDF问答机器人以及零代码AI应用构建平台Flowise。这些案例可以帮助读者将理论知识应用于实践,从而提升解决实际问题的能力。 本书不仅适用于刚入门的AI技术从业者、产品经理、计算机相关专业的学生,还包括AI爱好者和自学者。它旨在帮助读者提升技术素养,深入理解LangChain技术的原理,并通过详尽的开发指南和基础知识讲解,使读者不仅能理解技术的表象,更能洞察其背后的深层逻辑。 本书分为10个章节,涵盖了从LangChain的基础知识到应用开发的完整流程。其中,第1章介绍了大语言模型的发展趋势以及LangChain的全面解读;第2章则详细讲解了进行LangChain开发前的准备工作,如安装库、获取API Key等;第3章和第4章分别对模型的输入输出进行了深入分析;而第5到第7章则着重讲解了LangChain的核心技术点。整本书的结构旨在引导读者逐步深入,由浅入深地掌握LangChain技术。 另外,本书内容包括了对大语言模型技术的全面介绍,强调了其在各种应用场景中的重要作用,例如在AI绘图领域的Stable Diffusion与Midjourney等。这些技术正迅速成为技术发展和应用的焦点,而LangChain作为基于大语言模型的框架,为AI应用开发提供了新的可能。 本书是AI编程领域的一份宝贵资料,不仅为读者提供了丰富的知识,也为AI应用开发提供了一套完整的方法论。通过学习和实践本书内容,读者将能够更好地理解并运用LangChain技术,进而在AI行业的浪潮中乘风破浪。
2025-06-17 16:26:48 10.99MB 人工智能 编程语言 AI python
1
deepseek。基于deepseek模型的OCR文字识别系统。DeepSeek OCR 是一款依托于 DeepSeek AI 模型构建的先进文字识别工具,专注于利用图像识别技术精准提取图片内的文字内容。在该项目中,借助 DeepSeek API 实现了 OCR 功能,它兼容多种上传途径,比如直接上传文件或通过 URL 上传图片。 在当今信息时代,文字识别技术(OCR)已经成为处理大量文档和图片中的文字数据的关键工具。DeepSeek OCR 系统是其中的一个代表性产品,它利用先进的图像识别技术和深度学习模型,为用户提供了一个高效、准确的文字提取解决方案。这款系统不仅仅是一个简单的文字识别工具,它是基于DeepSeek AI技术构建,集成了复杂的数据处理和机器学习算法,使得文字识别的准确度和效率都得到了显著提升。 DeepSeek OCR 的工作原理是通过训练深度神经网络来理解和解析图像中的文字内容。通过大量的文字样本和图像数据训练,模型能够识别各种字体、大小的文字,并且能在不同的背景和光照条件下工作。系统设计者们通过精心设计的网络结构和算法优化,使得DeepSeek模型在处理复杂场景下的文字识别任务时也展现出优越的性能。 在实用性方面,DeepSeek OCR 提供了多种便捷的文字录入方式,用户可以通过直接上传文件或提供图片的URL来实现文字的快速提取。这一特点使得DeepSeek OCR系统不仅适用于传统的文档扫描和数据录入任务,同样适用于网络图片中文字信息的抓取和处理,极大地扩展了它的应用场景。无论是企业用户还是个人用户,都可以通过这种方式轻松获取图片中的文字信息,进行进一步的数据分析和处理。 系统的背后是强大的DeepSeek API,这是一个开放的接口,允许开发者在自己的应用程序中集成DeepSeek OCR功能。这意味着无论是创建新的应用程序还是对现有系统进行升级,开发者都可以利用这一技术来提高产品的智能化水平。由于DeepSeek模型已经预训练好,因此开发者可以跳过复杂的训练过程,直接使用API进行高效的文字识别。 标签“deepseek AI OCR 文字识别”概括了这个系统的三个核心要素:DeepSeek AI技术提供了技术基础,OCR技术使得系统可以对图像中的文字进行识别,而“文字识别”是这一技术应用的核心目的。这三者结合在一起,不仅代表了一个具体的识别工具,更体现了人工智能技术在实际应用中的巨大潜力。 基于DeepSeek模型的OCR文字识别系统是一个集成了尖端技术的智能文字识别工具,它不仅提高了文字识别的准确性和效率,而且提供了灵活的使用方式和强大的开发者支持,为各领域提供了强大的数据处理能力。随着人工智能技术的不断进步,这种类型的工具将会在信息提取、数据分析等方面发挥越来越重要的作用。
2025-06-17 14:17:44 427KB AI OCR 文字识别
1
AI City track 5数据集-voc-xml格式,这是一个特定应用于AI城市环境中的数据集,专门用于计算机视觉任务,特别是对象识别和图像标注。它包含736张图像,这些图像都是与城市交通环境密切相关的场景,其中标注了三种主要类别:戴头盔的人、未戴头盔的人以及摩托车。该数据集对于研究城市交通安全监控、人群行为分析、以及自动驾驶车辆视觉系统的开发等应用领域具有重要意义。 数据集中的所有图像都采用了PASCAL VOC(Visual Object Classes)格式的XML文件来标注,这种格式是图像识别和计算机视觉领域内广泛接受和使用的一种标注方式。每张图像对应一个XML文件,详细记录了图像中每个对象的位置、类别以及其他可能的属性信息。这样的数据集可以为机器学习算法提供训练样本,帮助模型识别图像中的对象,理解城市环境中的视觉信息。 数据集的构建是基于真实的城市交通场景,覆盖了各种天气、光照和复杂背景,这有助于训练出鲁棒性更强、泛化能力更高的模型。对于戴头盔和未戴头盔的人的区分,可能与交通规则的遵守以及安全意识的检测相关,这对于分析和提升城市交通安全具有潜在的应用价值。摩托车作为城市中常见的交通工具,其存在与否,以及是否正确使用安全装备,都是城市交通管理者关注的焦点。 数据集的发布,标志着对城市交通安全管理工具研究的深化。借助这样的数据集,研究人员可以开发更为高效的图像识别算法,用以实时监控城市交通环境,提升城市管理的智能化水平,减少交通事故发生的概率。例如,通过监控系统自动识别未戴头盔的摩托车驾驶人,可以即时预警或者采取干预措施,从而有效减少因交通事故造成的伤亡。 此外,该数据集的出现也可能促进相关软件开发工具和框架的发展,方便研究人员在城市交通监控、安全分析等领域快速部署和测试他们的模型。随着计算机视觉技术的进步,使用这类数据集训练出的模型将能够更好地服务于城市交通的智能化管理,为建设更加安全和谐的城市交通环境贡献力量。 AI City track 5数据集-voc-xml格式是一个针对城市交通安全监控特别设计的数据集,它集合了丰富的场景信息和精确的视觉标注,为推动城市交通管理的智能化、自动化提供了有力的数据支持,具有重要的研究和应用价值。
2025-06-14 18:58:22 82.16MB
1
人工智能技术自提出以来,经历了长期的发展和多次的技术革新,其对各行各业带来的影响日益显著。在新一代人工智能技术的推动下,我们正面临一场技术革命,它涉及数据、算力、算法等关键要素,并且正深刻影响着我们的生活方式和工作模式。 新一代人工智能技术的定义,源于其能够模仿人类的学习及其他智能行为,包括推理、语言理解、模式识别等。通过引入图灵测试和达特茅斯人工智能暑期研讨会建议书中的研究问题,人工智能确立了其作为独立学科的基础理论框架,涵盖了符号推理、机器学习和自然语言处理等核心研究方向。 在人工智能动力方面,计算技术的发展经历了四个时代:机械计算时代、电子计算时代、网络计算时代和智能计算时代。每个时代都代表着技术上的巨大飞跃,尤其是从物质到“思维”的转变,这是人工智能发展的重大突破点。当前,计算机技术已经达到了能够进行大规模、超大规模集成电路运算,并且在软件方面出现了数据库管理系统、网络管理系统和面向对象语言等重要技术。 新一代人工智能的发展方向主要包括大语言模型、自监督学习、强化学习和Transformer等。其中,大语言模型技术以自然语言处理为基础,不断优化和改进,让机器可以更精确地理解和生成自然语言,从而在与人类的交互中表现得更加自然和有效。例如,像ChatGPT和DeepSeek这样的技术正在改变我们与机器的交互方式,为用户提供更加智能化的服务。 人工智能技术的应用领域也越来越广泛,涵盖了生命科学、教育、科学探索、政务、新质生产力等多个方面。例如,“AI+教育”正在改变传统的教学方法,使学习变得更加个性化和互动。同时,人工智能也在“AI+政务”方面发挥着重要作用,提升了政府工作的效率和透明度。 另外,人工智能正在接替部分职业,取代那些重复性高、程序化明显的任务,从而释放人类从繁琐工作中解放出来,专注于更具创造性和战略性的工作。随着技术的不断进步,人工智能也将在不久的将来承担更多的角色,成为推动社会进步和产业变革的重要力量。 此外,新一代人工智能技术的发展还与数据、算力和算法密切相关。数据是人工智能的基石,没有足够和高质量的数据,机器学习模型就无法有效训练;算力是人工智能的能源,强大的计算能力可以加速模型的训练和推理过程;算法则是人工智能的大脑,决定着机器学习模型的学习效率和决策质量。 新一代人工智能技术的发展及其应用正在引领全球进入一个全新的时代,为人类社会带来了前所未有的机遇和挑战。技术的进步需要我们不断学习和适应,以确保能够充分利用人工智能带来的福祉,同时也要警惕其可能带来的负面影响,确保技术的发展符合人类社会的长远利益。
2025-06-13 08:32:03 14.33MB AI
1
人工智能(Artificial Intelligence,简称AI)是一种前沿的计算机科学技术,其核心目标是通过模拟、延伸和拓展人类智能来构建智能机器与系统。它融合了计算机科学、数学、统计学、心理学、神经科学等多个学科的知识,并利用深度学习、机器学习等算法,使计算机能够从数据中学习、理解和推断。 在实际应用中,人工智能体现在诸多领域:如机器人技术,其中机器人不仅能执行预设任务,还能通过感知环境自主决策;语言识别和语音助手技术,如Siri或小爱同学,它们能理解并回应用户的语音指令;图像识别技术,在安防监控、自动驾驶等领域实现对视觉信息的精准分析;自然语言处理技术,应用于搜索引擎、智能客服及社交媒体的情感分析等。 此外,专家系统能够在特定领域提供专业级建议,物联网中的智能设备借助AI优化资源分配与操作效率。人工智能的发展不断改变着我们的生活方式,从工作场景到日常生活,智能化正以前所未有的方式提升生产力、便捷性和生活质量,同时也在挑战伦理边界与社会规则,促使我们重新审视人与技术的关系及其长远影响。
2025-06-12 18:17:34 4.95MB 人工智能 ai python
1
tensorflow论文相关资料方便查询tensorflow应用相关内容。
2025-06-12 15:12:45 368KB AI tensorflow
1
在学习人工智能领域的AWS Certified AI Practitioner自学考试时,理解数据增强技术和神经网络参数计算是两个重要的知识点。数据增强是一种通过各种变换对现有训练数据进行扩充的技术,它可以创建更多的样本,增加数据多样性,从而提高模型的鲁棒性和泛化能力。常见的数据增强方法包括图像数据增强、文本数据增强和音频数据增强等。 在图像数据增强中,可以通过旋转、平移、缩放、翻转、裁剪、颜色变换和噪声添加等手段来扩充数据集。例如,旋转可以使模型识别不同角度的物体,而颜色变换则能增强模型对不同光照条件和颜色变化的适应能力。文本数据增强则可能包括同义词替换、随机插入、文本翻译和删除等策略,这些都是为了增加文本的多样性。音频数据增强方法有时间拉伸、音量调节、添加背景噪声等,目的是使模型能够在嘈杂的音频环境中也能准确识别信息。 数据增强技术的主要优势包括:1.增加数据量,尤其是在有限数据集的情况下;2.减少过拟合,让模型在训练时看到更多样化的输入数据;3.提高鲁棒性,使模型能够适应实际环境中的变化;4.缓解类别不平衡问题,通过增加少数类样本的数量来避免对多数类的偏向。然而,数据增强也有其局限性,如可能会增加训练的计算开销,以及在原始数据存在严重噪声或偏见时,单纯的数据增强可能不足以解决问题。 此外,全连接神经网络中的参数数量计算也是自学考试中的一个重要内容。如果第L层有nL个神经元,而上一层有nL-1个神经元,那么第L层的参数数量为nL-1乘以nL加上nL,即nL-1×nL+nL。该公式中,nL-1×nL代表连接权重的数量,而nL则代表偏置的数量。通过具体的例子可以帮助理解参数数量的计算,例如在三层神经网络中,每层拥有1000个神经元,输入层有100个输入特征,按照公式计算,第一层的参数数量为100×1000+1000=101,000,第二层为1000×1000+1000=1,001,000,第三层为1000×10+10=10,010。 从上述分析可以看出,数据增强技术和神经网络参数计算是机器学习特别是深度学习中的基础知识点。掌握这些知识点对于通过AWS Certified AI Practitioner自学考试具有重要意义。在实际应用中,它们能帮助开发者和数据科学家更有效地训练和部署人工智能模型,从而更好地服务于各种业务场景。
2025-06-09 16:22:52 341KB 人工智能
1