盆式PPO 关于沉思-PPO 这是Pensieve [1]的一个简单的TensorFlow实现。 详细地说,我们通过PPO而非A3C培训了Pensieve。 这是一个稳定的版本,已经准备好训练集和测试集,并且您可以轻松运行仓库:只需键入 python train.py 反而。 将每300个时代在测试集(来自HSDPA)上评估结果。 实验结果 我们报告了熵权重β,奖励和熵的训练曲线。 通过双簧管网络轨迹评估结果。 提示:橙色曲线:pensieve-ppo; 蓝色曲线:pensieve-a2c 预训练模型 此外,我们还在添加了预训练模型 与原始Pensieve模型相比,该模型的平均QoE提高了7.03%(0.924-> 0.989)。 如果您有任何疑问,请随时告诉我。 [1] Mao H,Netravali R,Alizadeh M.带自适应神经网络自适应视频流[C] // ACM数据
2023-02-16 13:49:26 2.71MB reinforcement-learning dqn pensieve ppo
1
pytorch-a2c-ppo-acktr请使用本自述文件中的超级参数。 使用其他超级参数,可能无法正常工作(毕竟是RL)! 这是Advantage Actor Critic(A2C)的PyTorch实现,同步pytorch-a2c-ppo-acktr请使用本自述文件中的超级参数。 使用其他超级参数,可能无法正常工作(毕竟是RL)! 这是Advantage Actor Critic(A2C)的PyTorch实现,这是A3C近端策略优化PPO的同步确定性版本,用于使用Kronecker因子近似ACKTR生成的对抗模仿学习GAIL进行深度强化学习的可扩展信任区域方法另请参阅OpenAI帖子:A2C / ACKTR和PPO获得更多信息
2022-05-26 11:38:01 8.53MB Python Deep Learning
1
PyTorch实现软演员- 评论家(SAC),双胞胎延迟DDPG(TD3),演员评论家(AC / A2C),近端策略优化(PPO),QT-Opt,PointNet 流行的无模型强化学习算法 PyTorch 和 Tensorflow 2.0 在 Openai 健身房环境和自我实现的 Reacher 环境中实现了最先进的无模型强化学习算法。 算法包括: 演员兼评论家 (AC/A2C); 软演员-评论家 (SAC); 深度确定性策略梯度 (DDPG); 双延迟 DDPG (TD3); 近端策略优化; QT-Opt(包括交叉熵(CE)方法); 点网; 运输机; 经常性政策梯度; 软决策树; 概率专家混合; QMIX Actor-Critic (AC/A2C); Soft Actor-Critic (SAC); Deep Deterministic Policy Gradient (DDPG); Twin Delayed DDPG (TD3); Proximal Policy Optimization (PPO); QT-Opt (including Cross-entropy (CE)
2022-05-11 09:04:15 2.46MB pytorch 文档资料 人工智能 python
基于LSTM的A2C 该存储库提供了IEEE Communications Letters中论文“用于基于用户移动性的网络切片中的资源管理中基于LSTM的Advantage Actor-Critic学习”的代码。 请注意,这是一个研究项目,从定义上讲是不稳定的。 如果发现不正确或奇怪的地方,请写信给我们。 我们在共享全部或部分代码必须引用本文的条件下共享代码。 @article {li2020lstm, title = {用于基于用户移动性的网络切片中的资源管理的基于LSTM的优势演员批判性学习}, 作者= {李荣鹏和王楚杰和赵智峰和郭荣彬和张洪刚}, journal = {IEEE Communications Letters}, 年= {2020}, 发布者= {IEEE} }
2022-02-22 16:49:52 11KB Python
1
火炬RL RL方法的Pytorch实现 支持具有连续和离散动作空间的环境。 支持具有1d和3d观察空间的环境。 支持多进程环境 要求 一般要求 火炬1.7 健身房(0.10.9) Mujoco(1.50.1) 列表(用于日志) tensorboardX(日志文件输出) 张量板要求 Tensorflow:启动tensorboard或读取tf记录中的日志 安装 使用use environment.yml创建虚拟环境 conda create -f environment.yml source activate py_off 手动安装所有要求 用法 在配置文件中指定算法的参数,并在参数中指定日志目录/种子/设备 python examples/ppo_continuous_vec.py --config config/ppo_halfcheetah.json --seed 0 --device 0 --id ppo_halfcheetah 结帐示例文件夹以获取详细信息 目前包含: 政策上的方法: 加强 A2C(演员评论家) PPO(近端政策优化)
2021-11-23 11:43:20 170KB algorithm reinforcement-learning pytorch dqn
1
A2C 描述 这是使用OpenAI体育馆环境以PyTorch编写的的实现。 此实现包括卷积模型,原始A3C模型,完全连接的模型(基于Karpathy的Blog)和基于GRU的递归模型的选项。 BPTT 循环训练可以选择使用时间反向传播(BPTT),它可以在一系列状态而不是当前状态上建立梯度依存关系。 初步结果表明,使用BPTT不会提高训练效果。 有关两种培训方法的比较,请参见。 该算法在Pong-v0上进行了训练。 奖励图是在培训期间首次展示时收集的奖励的移动平均值。 对于Pong而言,奖励指标是每个游戏结束时收集的奖励的运行平均值,而不是完整的21分比赛。 这使最低奖励为-1,最大奖励为+1。 移动平均因子设置为0.99。 在Pong-v0上的GRU模型训练过程中,经过4000万个时间步的平均奖励图。 在使用反向传播穿越时间训练的Pong-v0上训练GRU模型的过程中,在400
2021-11-13 16:11:12 107KB Python
1
可读,可重用,可扩展 Machin是为pytorch设计的增强库。 支持的型号 任何事物,包括循环网络。 支持的算法 当前,Machin已实现以下算法,该列表仍在增长: 单代理算法: 多主体算法: 大规模并行算法: 增强功能: 支持的算法: 进化策略 基于模型的方法 特征 1.可读 与其他强化学习库(例如著名的 , 和。 Machin尝试仅提供RL算法的简单明了的实现。 Machin中的所有算法均以最小的抽象设计,并具有非常详细的文档以及各种有用的教程。 2.可重复使用 Machin采用与pytorch类似的方法,将算法和数据结构封装在自己的类中。 用户无需设置一系列data collectors , trainers , runners , samplers ...即可使用它们,只需导入即可。 模型上的唯一限制是它们的输入/输出格式,但是,这些限制很小,可以轻松地使算法适
2021-09-17 19:09:16 1.54MB python reinforcement-learning deep-learning gae
1
A2C深度强化学习算法, 姿态控制, python代码
深度强化学习算法 该存储库将使用PyTorch实现经典的深度强化学习算法。 该存储库的目的是为人们提供清晰的代码,以供他们学习深度强化学习算法。 将来,将添加更多算法,并且还将保留现有代码。 当前实施 深度Q学习网络(DQN) 基本DQN 双Q网络 决斗网络架构 深度确定性策略梯度(DDPG) 优势演员评判(A2C) 信任区域策略梯度(TRPO) 近端政策优化(PPO) 使用克罗内克因素信任区域(ACKTR)的演员评论家 软演员评论(SAC) 更新信息 :triangular_flag: 2018年10月17日-在此更新中,大多数算法已得到改进,并添加了更多关于图的实验(DPPG除外)。 PPO现在支持atari游戏和mujoco-env 。 TRPO非常稳定,可以得到更好的结果! :triangular_flag: 2019-07-15-在此更新中,不再需要为openai基准安装。 我在rl__utils模块中集成了有用的功能。 DDPG也重新实现,并支持更多结果。 自述文件已被修改。 代码结构也有微小的调整。 :triangular_flag: 201
2021-08-29 18:54:48 3.92MB algorithm deep-learning atari2600 flappy-bird
1