"基于9/7提升小波的图像压缩Matlab源码"涉及的主要知识点是图像压缩技术,特别是使用9/7提升小波变换的方法,以及实现这些算法的Matlab编程语言。 【图像压缩】是计算机科学领域的一个关键概念,主要用于减少图像数据的存储空间和传输带宽。在数字图像处理中,图像压缩可以分为有损和无损两种类型。有损压缩会牺牲一定的图像质量来达到更高的压缩比,而无损压缩则试图在压缩后能完全恢复原始图像,但通常压缩比相对较低。 【9/7提升小波】是一种用于图像处理的特殊小波变换,也称为Daubechies 9/7小波。这种小波具有九个正系数和七个负系数,因此得名。9/7小波以其优良的近似性能和低计算复杂度在图像压缩领域受到广泛应用。它的主要优点在于能够在保持图像细节的同时,有效地去除图像中的高频噪声,这使得它特别适合于有损压缩。 【提升小波变换】是小波分析的一种高效实现方法,相较于传统的滤波器银行小波变换,提升框架提供了更灵活的构造和更高效的算法。提升小波变换通过一系列线性组合和上采样操作逐步构建小波系数,简化了计算过程,降低了计算量,同时保持了小波变换的优良特性。 【Matlab源码】是实现上述9/7提升小波图像压缩算法的编程代码。Matlab是一种广泛用于数值计算、符号计算和图像处理等领域的高级编程语言。其强大的矩阵运算能力和丰富的图像处理函数库,使得它成为实现小波变换和图像压缩的理想工具。文件"image_97_daubechies.m"很可能是实现9/7小波提升变换的Matlab函数,可能包含了图像的预处理、小波分解、量化、熵编码和解码等步骤。 在实际应用中,这段Matlab源码可能包括以下步骤: 1. **读取图像**:使用Matlab的imread函数加载图像。 2. **图像预处理**:可能包括色彩空间转换(如RGB到灰度)、尺寸调整等。 3. **9/7提升小波变换**:调用特定的提升小波函数,如使用`wavedec2`或自定义的提升框架实现。 4. **量化**:将得到的小波系数进行量化,以进一步减小数据量。 5. **熵编码**:可能采用哈夫曼编码或算术编码,以提高压缩效率。 6. **保存压缩数据**:将编码后的数据写入文件。 7. **解压过程**:与压缩相反,包括熵解码、反量化、逆9/7提升小波变换和图像重建。 理解这些核心概念和技术,不仅可以帮助你阅读和使用提供的Matlab源码,还能为你深入研究图像处理和小波理论打下坚实的基础。在实际项目中,你可以根据需要调整代码参数,优化压缩效果,或者将其与其他图像处理技术结合使用。
2025-07-23 16:56:20 1KB 9/7提升小波 图像压缩 Matlab源码
1
整数提升5/3小波变换(Integer Lifted Wavelet Transform, ILWT)是一种在数字信号处理领域广泛应用的算法,特别是在图像压缩和分析中。它通过使用提升框架,以更高效的方式实现离散小波变换(DWT)。Matlab作为强大的数值计算环境,提供了方便的工具来实现这一过程。下面我们将详细探讨ILWT的基本原理、Matlab中的实现方法以及如何进行分解和重构。 **一、整数提升5/3小波变换** 5/3小波变换是一种具有较好时间和频率局部化特性的离散小波变换类型,其主要特点是近似系数和细节系数的量化误差较小,因此在数据压缩和信号去噪等方面有较好的性能。提升框架是5/3小波变换的一种实现方式,相比传统的滤波器组方法,提升框架在计算上更为高效,且更容易实现整数变换。 提升框架的核心是通过一系列简单的操作(如预测和更新)来实现小波变换。在5/3小波变换中,这些操作包括上采样、下采样、线性组合和舍入。提升框架的优势在于,它可以实现精确的整数变换,这对于需要保留原始数据整数特性的应用至关重要。 **二、Matlab实现** 在Matlab中,实现整数提升5/3小波变换通常涉及编写或调用已有的M文件函数。根据提供的文件名`decompose53.m`和`recompose53.m`,我们可以推测这两个文件分别用于执行分解和重构过程。 1. **分解过程(decompose53.m)** - 分解过程将原始信号分为多个尺度的近似信号和细节信号。对输入信号进行上采样,然后通过预测和更新操作生成不同尺度的小波系数。在5/3小波变换中,通常会生成一个近似系数向量和两个细节系数向量,分别对应低频和高频部分。 2. **重构过程(recompose53.m)** - 重构是将小波系数反向转换回原始信号的过程。这涉及到逆向执行提升框架中的操作,即下采样、上采样、线性组合和舍入。通过重新组合各个尺度的系数,可以恢复出与原始信号尽可能接近的重构信号。 **三、代码实现细节** 在Matlab中,可以使用循环结构来实现提升框架的迭代,或者使用内建的小波工具箱函数,如`wavedec`和`waverec`,它们封装了提升框架的具体实现。不过,由于题目中提到的是自定义的`decompose53.m`和`recompose53.m`,我们可能需要查看这两个文件的源代码来了解具体实现步骤。 Matlab提供了一个灵活的平台来实现整数提升5/3小波变换,使得研究人员和工程师能够快速地进行信号处理和分析实验。通过理解ILWT的原理和Matlab中的实现,我们可以更好地利用这种技术来解决实际问题,例如图像压缩、噪声消除和数据压缩等。
2024-07-03 11:23:15 1KB Matlab 提升小波变换
1
用matlab编写的提升小波算法,应用于图像处理,很好用
2024-06-18 16:45:32 3KB
应用于JPEG2000的97(53)提升小波算法及仿真原代码 毕业设计应该能用到
2022-07-01 15:05:31 463KB matlab 小波
1
基于提升小波变换的医学图像融合
2022-05-16 16:19:17 1.12MB 研究论文
1
通过对变步长 LMS 自适应滤波算法和提升小波变换理论进行研究,将两种算法换相结合,提出一种新的提升小波变步长 LMS自适应滤波改进算法;根据信号特征对更新算子和预测算子自适应的构造,对正交分解的信号进行变步长 LMS自适应消噪,提高了收敛速度和稳定性;通过仿真分析,证明了改进的提升小波变步长 LMS滤波算法具有较快的收敛速度和更强的抑噪能力;最后,将提出的方法应用于低速重载齿轮箱的故障诊断中,分析结果表明,该方法是一种非常有效的故障特征处理方法。
2022-02-25 21:41:23 1.16MB 自然科学 论文
1
努力打造csdn的0资源库,欢迎大家下载。VC++实现提升小波算法的。
2022-02-21 11:21:28 255KB 提升小波 9/7 5/3
1
文章是描述二维提升小波变换的图像融合,何伟。将图像进行提升小波变换,分别对高低频采用不同的融合方法,得到融合后图像。 并引入信息熵、相关系数和清晰度等性能指 标对融合后的图像进行分析。 实验结果表明,此提升方法在融合图像质量上优于传统小波变换需要的可以下载
2022-01-03 20:03:21 300KB 提升小波
1
提出了一种新的多功能彩色数字图像双水印算法。提取原始彩色图像的R、G、B 3个色彩通道,在蓝色分量B的中频系数上嵌入扩频后的版权水印。再根据绿色分量 G生成认证水印,嵌入在量化后的提升小波系数上,不需要考虑两种水印的嵌入顺序。实验表明,版权水印具有很好的抗剪切性,鲁棒性较强、透明性较好;认证水印可精确进行图像篡改检测和定位。
2021-12-31 16:26:17 1.32MB 提升小波 扩频 版权水印 认证水印
1
WAVELIFT:基于提升方法的多级离散二维小波变换。 c = wavelift(x, nlevel, wname) 根据nlevel 的值: nlevel > 0:将二维矩阵 x 分解为 nlevel 级别; nlevel < 0:做逆变换到nlevel level; nlevel = 0:设置c等于x; wname 是用于 DWT 或 IDWT 的小波名称。 可以省略。 如果是这样,WAVELIFT 使用默认的 Cohen-Daubechies-Feauveau (CDF) 9/7 小波,即'cdf97'。目前WAVELIFT只支持两种小波,即cdf97和名为'spl53'的spline 5/3。 但是,借助下图所示的有组织的提升结构,它可以适应其他特定的提升实现方式。 大多数情况下唯一需要的只是修改结构 L 和模式以指示有损或无损压缩。 WAVELIFT 调用另一个函数 CO
2021-12-30 16:39:55 6KB matlab
1