涉及Excel常用快捷键,常用函数,多张表的合并,数据联动,数据透视表等等。这是初学者Excel进阶练习素材,初入职场新人必备技能。
2025-08-07 21:45:29 7.05MB Excel
1
内容概要:本文详细介绍了利用MATLAB绘制分数阶三维和四维混沌系统的吸引子相图及其复杂度和分岔图谱的方法。首先,通过分数阶Lorenz系统为例,展示了如何使用预估校正法绘制吸引子相图,并强调了步长控制的重要性。接着,探讨了Adomian分解法和预估校正法在不同情况下的应用,特别是在绘制分岔图时的表现。此外,还讨论了复杂度图谱的生成,包括双参数扫描和矩阵操作的应用。最后,介绍了李雅普诺夫指数谱的计算方法及其在确认混沌行为中的作用。 适合人群:对混沌系统、分数阶微分方程及MATLAB编程有一定了解的研究人员和技术爱好者。 使用场景及目标:① 学习并掌握分数阶混沌系统的相图绘制方法;② 探讨不同方法(如Adomian分解法和预估校正法)在分岔图绘制中的优劣;③ 分析复杂度图谱和李雅普诺夫指数谱,以评估系统的混沌特性。 其他说明:文中提供了详细的MATLAB代码示例,帮助读者更好地理解和实践相关理论。同时,提醒读者注意一些常见的陷阱,如复杂度对数据长度的敏感性和配色选择的影响。
2025-08-06 14:31:31 995KB
1
内容概要:本文详细介绍了一种利用MATLAB和递推最小二乘法(RLS)对锂离子电池二阶RC等效电路模型进行参数辨识的方法。首先介绍了数据读取步骤,包括从NASA官方获取电池数据并进行预处理。接着阐述了RLS的基本原理和实现过程,展示了如何通过不断更新参数估计值使模型输出与实际测量值之间的误差最小化。最后,通过实验验证了该方法的有效性和准确性,误差控制在3%以内,能够很好地反映电池的实际特性。 适合人群:从事电池管理系统(BMS)开发的研究人员和技术人员,尤其是对锂离子电池建模感兴趣的工程师。 使用场景及目标:①用于电池性能评估和优化;②提高电池管理系统的精度和可靠性;③为后续电池老化研究提供基础。 其他说明:文中提供了详细的MATLAB代码示例和一些实用的经验技巧,帮助读者更好地理解和应用这一方法。此外,还提到了一些常见的注意事项和可能遇到的问题,如电流正负号定义、初始SOC校准等。
2025-08-05 22:59:36 610KB
1
基于二阶RC电池模型的在线参数辨识与实时验证研究——使用FFRLS算法及动态工况下的电芯性能评估,二阶RC电池模型参数在线辨识(BMS电池管理系统) 使用遗忘因子最小二乘法 FFRLS 对电池模型进行参数辨识,并利用辨识的参数进行端电压的实时验证,基于动态工况,电压误差不超过20mv,也可以用来与离线辨识做对比,效果见图 内容包含做电池Simulink模型、电芯数据、推导公式、参考lunwen 程序已经调试好,可直接运行,也可以替成自己的数据 ,二阶RC电池模型参数;在线辨识;BMS电池管理系统;遗忘因子最小二乘法(FFRLS);参数辨识;端电压实时验证;动态工况;电压误差;Simulink模型;电芯数据;推导公式;参考lunwen(文章);程序调试;数据替换。,基于FFRLS的二阶RC电池模型参数在线辨识与验证
2025-08-05 10:39:47 210KB 数据仓库
1
6.5 时序裕量测试 在 6.2节针对接口时序进行了讲解。在实际应用过程中,由于环境应力原因,DDR3时 序容易产生漂移,从而引发时序问题。最典型的就是数据线的建立保持时间偏移。 下面是常用的裕量测试方法: 6.5.1 窗口扫描 窗口扫描的目的跟示波器测量建立保持时间的目的是一样的。就是获取当前时序所在 的窗口位置,看是否时序向一边偏移了。但是窗口扫描的方法跟示波器测量不一样。 示波器测量是直接通过座标卡建立保持时间。而窗口扫描的方法则是通过修改寄存器, 调整 DQS/DQ、CK/AC的相位关系,得出误码时的相位,间接反应建立保持时间。 下面具体举例说明窗口测试的原理。比如,下图是 DDR3 初始化及训练后的 DQS/DQ 相 位。 图 6-42 DQ-DQS 初始时序 将 DQ 相位逐步前移,使 DDR3 接口出现误码,那么这个相移量就是初始化训练后的左 边窗口大小。 图 6-43 DQ-DQS 时序左边界 将 DQ 相位逐步后移,使 DDR3 接口出现误码,那么这个相移量就是初始化训练后的右 边窗口大小。
2025-08-04 14:06:15 5.67MB DDR3 基础与进阶 硬件设计 参数详解
1
在本课程中,"4.0 Java全栈开发前端+后端(全栈工程师进阶之路)",我们将深入探讨如何结合Java技术和Vue.js前端框架,构建完整的全栈应用程序,特别是针对企业级项目的实践应用。这是一条全栈工程师的成长路径,旨在提升开发者在前后端开发中的综合技能。 我们要关注的是Java技术。Java是一种广泛使用的后端编程语言,以其跨平台、面向对象和强大的性能而受到青睐。在这个课程中,我们将学习如何使用Java进行服务器端开发,包括但不限于Spring Boot框架的应用,它简化了创建生产级Java应用的过程。Spring Boot支持自动配置、内嵌Web服务器以及开箱即用的特性,使得开发过程更加高效。此外,我们还将涉及到数据库操作,如MySQL的使用,以及JPA(Java Persistence API)或Hibernate等ORM框架,用于处理数据持久化。 接下来,我们转向前端开发,重点是Vue.js 3框架。Vue.js是近年来非常流行的前端JavaScript框架,以其易学性、灵活性和高性能而著称。Vue 3引入了许多改进,包括Composition API,它提高了代码的可复用性和组织性。我们将学习如何利用Vue CLI创建项目,设置路由,使用Vuex管理状态,以及集成Axios库进行HTTP请求,实现前后端数据交互。同时,Vue组件化开发也是课程的重要组成部分,它有助于构建可重用、模块化的用户界面。 课程中的“头条新闻”项目案例将把这些理论知识付诸实践。这个项目模拟了一个新闻聚合网站,展示如何利用Java后端提供动态数据,以及Vue前端实现动态渲染和交互。通过这个案例,学员将有机会学习到实际开发过程中的一些常见问题,例如错误处理、API调用的最佳实践以及性能优化技巧。 在项目中,我们看到有若干图像文件,如0news.jpg、logo.png、new3.png、new1.png、new2.png,这些很可能是用于新闻展示的图片资源。在前端开发中,正确地管理和加载这些静态资源是非常重要的,Vue.js提供了便捷的方式来处理它们,例如通过``标签或者在组件中使用require或import语句来引入。 这个课程涵盖了从Java后端开发到Vue.js前端实现的全栈技能,不仅教授理论知识,还通过实际项目案例让你亲身体验开发流程。通过学习,你将能够熟练地运用这些技术,成为一名全面的全栈工程师,胜任企业级项目的需求。
2025-08-01 20:26:38 1.05MB java vue.js
1
"基于多时间尺度优化的含分布式光伏配电网有功无功协调策略复现:日前预测与日内校正的二阶锥模型线性化处理","基于多时间尺度优化的含分布式光伏配电网有功无功协调调度策略复现:日前预测与日内校正的二阶锥模型线性化处理",基于MPC含分布式光伏配电网有功无功协调优化复现 日前决策出各设备预测出力,日内对各设备出力进行校正,使用二阶锥模型线性化处理,日前时间尺度为1h,日内时间尺度为15min,多时间尺度日前日内调度,模型见文献,仿真结果见图。 ,核心关键词:MPC; 分布式光伏配电网; 有功无功协调优化; 复现; 日前决策; 设备预测出力; 日内校正; 二阶锥模型; 线性化处理; 多时间尺度调度; 仿真结果。,基于多时间尺度调度的配电网优化复现
2025-07-26 14:25:21 560KB
1
基于二阶锥约束的ieee33节点潮流计算,运行环境需要matpower7.1,求解器为yalmip+gurobi。求解结果与matpower中的ieee33节点求解结果一致,可用于配电网故障重构,故障定位的基础代码。
2025-07-17 23:57:05 4KB MATLAB 潮流计算
1
模拟IC电路噪声仿真大全:从初级到进阶教学与射频SP噪声详解,包括Transi瞬态噪声与PSD分析,《模拟IC电路噪声仿真全解析:从初级到进阶,含射频SP噪声与实际应用案例》,模拟ic 电路噪声仿真教学,保姆级教学 三份文档,一份82页初级教学,一份92页进阶教学,一份38页射频sp噪声。 都是有配套电路文件压缩包 直接下载,virtuoso直接使用,免安装 初级教学,有6个小案例教学。 首先学会Transient Noise Analysis的仿真设置,这样设置的原理是什么?还有怎么显示PSD?还有瞬态噪声和AC噪声有什么区别?噪声的fmax与fmin怎么设置?参数噪声刻度?瞬态噪声和周期稳态噪声Pnoise有何区别?怎么测出RC滤波电路的真实噪声? 进阶教学,三个小案例教学 1,开关电容放大器的噪声,PSD仿真 2,环形振荡器的jitter和相位噪声仿真 3,buffer的时域噪声和jitter抖动仿真 射频ic电路,以低噪声放大电路LNA为案例,怎么使用SP仿真方法仿真出一些噪声指标参数(满9张图了,没放图片) ,ic电路;噪声仿真教学; 初级教学; 进阶教学; 射频SP噪声;
2025-07-17 17:40:12 4.2MB 哈希算法
1
基于双二阶广义积分器的锁相环Simulink仿真:非理想电网下的应用与适应性分析,DSOGI基于双二阶广义积分器的锁相环Simulink仿真 适用于各种非理想电网 ,核心关键词:DSOGI; 双二阶广义积分器; 锁相环; Simulink仿真; 非理想电网。,双二阶广义积分器DSOGI锁相环仿真研究:非理想电网通用解法 在现代电力电子系统中,锁相环(PLL)技术发挥着至关重要的作用,尤其是在频率和相位同步方面。随着电网运行环境的复杂化,对锁相环的要求也在不断提升。传统的锁相环技术可能在非理想电网条件下表现不佳,因此研究者们开始寻求更为先进的技术,以提高系统的适应性和鲁棒性。基于双二阶广义积分器(DSOGI)的锁相环技术便是其中的一种创新方案。 DSOGI锁相环技术相较于传统方法,在跟踪电网频率变化、抑制电网谐波干扰以及提高动态响应方面显示出显著优势。利用DSOGI的核心优势,可以在电网质量较差的条件下,依然保持出色的锁相性能。通过Simulink仿真平台,研究者们可以构建模型,对DSOGI锁相环进行深入的研究和测试,以分析其在各种非理想电网条件下的应用效果。 本文档集合了多篇关于DSOGI锁相环Simulink仿真的研究文献,它们不仅详细介绍了DSOGI锁相环的设计原理和实现方法,而且通过一系列仿真实验验证了该技术在非理想电网条件下的性能。这些研究文献探讨了如何利用DSOGI技术解决电网电压和频率波动、谐波污染等带来的同步问题,并且提供了相应的仿真结果和分析,以证明DSOGI锁相环技术的实用性和有效性。 通过这些文献的深入研究,可以发现DSOGI锁相环技术在多个方面具有显著优势。在电网频率快速变化的情况下,DSOGI锁相环能够迅速准确地跟踪频率变化,并保持锁相性能;在电网中含有高次谐波时,DSOGI锁相环能够有效地抑制谐波影响,避免锁相环因谐波干扰而失锁;在电网电压跌落或突变的情况下,DSOGI锁相环仍然能够保持稳定的工作状态,从而确保系统的安全运行。 本文档通过一系列仿真实验,展示了DSOGI锁相环在实际电网中应用时的稳定性和适应性。实验结果表明,无论是在电网频率偏移、电压波动还是谐波干扰的情况下,DSOGI锁相环都能保持良好的同步性能。这对于提高电网的可靠性、增强电能质量控制能力具有重要意义。 DSOGI锁相环技术作为一项创新的同步技术,在非理想电网条件下的应用展现出巨大的潜力。通过Simulink仿真研究,研究者们不仅能够更深入地理解DSOGI锁相环的工作原理,还能够开发出适应各种电网条件的高性能锁相环设备。未来的研究可以进一步扩展到更多电网异常情况下的仿真测试,以及DSOGI锁相环与其他电力电子设备的协同工作能力,为智能电网技术的发展提供更多理论支持和实践经验。
2025-07-14 15:15:38 83KB kind
1