5G通信系统的时间同步仿真,matlab2021a仿真,输出时间同步后的结果。
2023-08-28 19:25:53 53.33MB 时间同步 5G通信
本书主要介绍了5G系统设计中涉及的关键技术及相应的国际标准化内容,其中空口技术部分主要涉及初始接入设计、控制信道设计、大规模天线设计、信道编码、NR与LTE共存几个主要部分。高层设计及接入网架构方面将涵盖NSA/SA、CU/DU分离、双连接等内容。本书不仅对这些关键技术进行了介绍,还对这些技术的标准化过程及标准化方案进行了详细分析。 第 1章 5G标准制定概述 1.1 ITU 5G需求的制定 3 1.2 中国参与5G需求的研究制定 5 1.3 5G标准的制定过程 7 1.3.1 ITU关于IMT-2020(5G)标准的制定过程 7 1.3.2 3GPP 5G国际标准制定 11 第 2章 5G系统设计架构与标准体系 2.1 5G系统网络架构 16 2.2 无线接口 19 2.2.1 物理层 19 2.2.2 数据链路层 22 2.2.3 RRC层 24 2.3 物理层系统设计架构及关键技术 26 2.3.1 物理层系统设计架构 26 2.3.2 物理层关键技术 29 2.4 NR标准体系架构介绍 33 参考文献 38 第3章 5G NR基础参数及接入设计 3.1 基础参数及帧结构 40
2022-07-14 22:04:12 20.07MB 5G移动通信技术
1
基于WOA鲸鱼优化的5G通信系统资源分配优化,matlab2021a仿真
2022-04-26 09:10:24 17KB WOA优化资源分配
河北联通5G培训 5G系统技术入门教程(全),99页PPT 1、5G系统标准发展概述 2、5G系统核心能力指标 3、5G系统关键无线技术 4、5G系统新型网络架构 5、5G系统重要网络技术
2022-03-23 14:38:23 10.54MB 5G
1
5G系统设计中涉及的关键技术及相应的国际标准化内容,其中空口技术部分主要涉及初始接入设计、控制信道设计、大规模天线设计、信道编码、NR与LTE共存几个主要部
2022-01-27 09:09:56 28.04MB 5G无线系统设计与国际标准
本文首先回顾了5G中波形设计方案(主要是FBMC调制)和大规模多天线系 统(即massive MIMO)的现有工作和主要挑战。然后,简要介绍了基于Massive MIMO的FBMC系统中的自均衡性质,该性质可以用于减少系统所需的子载波数 目。同时,FBMC中的盲信道跟踪性质可以用于消除massive MIMO系统中的导频 污染问题。尽管如此,如何将FBMC技术应用于massive MIMO系统中的误码率、 计算复杂度、线性需求等方面仍然不明确,未来更多的研究工作需要在massive MIMO-FBMC方面展开来。
2021-12-18 20:01:13 643KB 5g MASSIVE-MIMO
1
目 录 前 言 V 1. 范围 6 2. 规范性引用文件 6 3. 术语、定义和缩略语 6 4. 概述 7 4.1. 背景 7 4.2. 测试目的 8 4.3. 测试环境基本要求 9 4.3.1. 网络结构与规模 9 4.3.2. 测试区域 9 4.3.3. 业务模型 9 4.3.4. 设备要求 9 4.3.5. 终端要求 9 4.3.6. 仪表和软件需求 10 4.3.7. 测试网络基本配置 10 4.3.8. 配合测试设备 11 4.4. 加扰方式 11 4.4.1. 干扰级别 11 4.5. 信道条件定义 12 4.6. 测试中的终端移动速度 12 4.7. 测试其他约定 12 5. 测试用例概览 12 6. 测试用例 14 6.1. 覆盖测试 14 6.1.1. 全网底噪普查 14 6.1.1.1. 2.6GHz D3频段 14 6.1.1.2. 3.5GHz 频段 14 6.1.2. 单小区覆盖-4G 14 6.1.2.1. 下行-孤站(2.6GHz) 14 6.1.2.2. 下行-空扰(2.6GHz) 15 6.1.2.3. 下行-加扰(2.6GHz) 15 6.1.2.4. 上行-孤站(2.6GHz) 15 6.1.2.5. 上行-空扰(2.6GHz) 16 6.1.2.6. 上行-加扰(2.6GHz) 16 6.1.2.7. 下行-空扰(1.9GHz) 16 6.1.3. 单小区覆盖-5G(上行单发) 16 6.1.3.1. 下行-孤站 16 6.1.3.2. 下行-空扰 16 6.1.3.3. 下行-加扰 16 6.1.3.4. 上行-孤站 16 6.1.3.5. 上行-空扰 17 6.1.3.6. 上行-加扰 17 6.1.4. 单小区覆盖-5G(上行双发) 17 6.1.4.1. 下行-孤站 17 6.1.4.2. 下行-空扰 17 6.1.4.3. 下行-加扰 17 6.1.4.4. 上行-孤站 17 6.1.4.5. 上行-空扰 17 6.1.4.6. 上行-加扰 17 6.1.5. 全网覆盖 18 6.1.5.1. 下行-空扰 18 6.1.5.2. 下行-加扰 18 6.1.5.3. 上行-加扰(上行双发) 18 6.1.6. 室外覆盖室内 19 6.1.6.1. 4G(2.6GHz) 19 6.1.6.2. 5G-下行 19 6.1.6.3. 5G-上行(上行双发) 20 6.1.7. 3.5GHz穿透能力 20 6.1.7.1. 办公楼宇 20 6.1.7.2. 住宅小区 21 6.2. 吞吐量测试 21 6.2.1. 单用户峰值吞吐量 21 6.2.2. 小区峰值吞吐量 22 6.2.3. 小区平均吞吐量 22 6.3. 移动性测试 24 6.3.1. 切换时延和成功率 24 6.4. 时延测试 25 6.4.1. 用户面时延-空扰 25 6.4.2. 用户面时延-加扰 26 6.4.3. 控制面时延-加扰(Idle到Connected) 26 6.4.4. 控制面时延-加扰(Inactive到Connected) 28 6.5. NR控制信道覆盖方案对比 28 6.5.1. PDCCH覆盖方案对比 28 6.5.1.1. PDCCH覆盖方案对比(空扰) 28 6.5.1.2. PDCCH覆盖方案对比(加扰) 29 6.5.2. PUCCH覆盖方案对比 29 6.5.2.1. PUCCH覆盖方案对比(空扰) 29 6.5.2.2. PUCCH覆盖方案对比(加扰) 30 6.5.3. 同步/广播信道覆盖方案对比 30 6.5.4. 控制信道波束赋形的随机接入时延 31 6.6. NR系统设计实现方案对比测试 32 6.6.1. NR帧结构方案对比 32 6.6.2. NR系统参数方案对比 33 6.7. NR关键技术及创新方案测试 34 6.7.1. 上下行频率解耦方案 34 6.7.1.1. 上下行频率解耦方案(空扰) 34 6.7.1.2. 上下行频率解耦方案(加扰) 35 7. 编制历史 35
2021-10-15 10:30:14 602KB 5G NR 测试规范
1
5G NR基站重构为CU和DU两个逻辑网元,根据场景和需求可以合一部署、也可以分开部署; 5G NR网元之间的网络功能重构,如部分核心网功能下沉至CU,BBU部分功能上移至RRU/AAU。
2021-10-15 09:46:07 1.08MB 5G 系统架构 CU DU
1
5G通信系统中massive-MIMO-FBMC技术的结合概述.pdf
2021-09-20 18:01:43 499KB