本书由CISM国际机械科学中心出版,由弗朗西斯科·奇内斯塔和皮埃尔·拉德维兹主编,旨在探讨分离表示和基于PGD(Proper Generalized Decomposition)的模型降阶技术。书中不仅介绍了这些方法的基础理论,还详细探讨了其在工程、力学、计算机科学和应用数学领域的应用。针对现代科学和工程中面临的复杂计算问题,本书提出了有效的降维方法,以减少计算成本并提高效率。特别地,书中强调了如何通过PGD方法实现低维空间中的高精度解,并讨论了模型降阶技术在实时计算和多查询场景中的优势。此外,本书还涵盖了模型降阶技术在热传导、非线性动力学和其他多物理场问题中的具体应用案例。
2025-08-24 22:35:26 14.1MB Mechanical Sciences Model Reduction
1
### Oracle数据库进阶-高可用性、性能优化和备份恢复 #### 一、Oracle数据库高可用性 在当今的企业环境中,数据库系统的高可用性(High Availability, HA)至关重要。Oracle数据库提供了一系列强大的高可用性解决方案,确保数据服务的连续性和业务的不间断运行。 **1.1 RAC(Real Application Clusters)** RAC是一种集群技术,允许多个服务器共享同一组磁盘上的数据库实例。通过将多个节点连接在一起,RAC能够提供极高的可用性,并且在单个节点发生故障时,其他节点可以继续提供服务,从而实现故障切换。 **1.2 Data Guard** Data Guard是Oracle数据库的一个关键特性,它通过创建一个或多个备用数据库来保护主数据库。这些备用数据库可以位于不同的地理位置,以提高灾难恢复能力。Data Guard支持多种模式,包括物理备用、逻辑备用和快照备用等,可以根据实际需求选择最适合的方式。 **1.3 GoldenGate** GoldenGate是一款异构数据库复制工具,可以在不同版本的Oracle数据库之间进行数据复制,也可以与其他数据库系统如MySQL、SQL Server等进行数据同步。GoldenGate支持实时数据传输和事务一致性,非常适合于需要跨平台数据同步的场景。 #### 二、Oracle数据库性能优化 随着业务量的增长,数据库性能成为影响用户体验的关键因素之一。针对Oracle数据库,可以通过以下几种方式来进行性能优化: **2.1 SQL调优** SQL语句的执行效率直接影响到整个应用的响应时间。通过对SQL语句进行分析,找到执行计划中的瓶颈,并进行相应的优化调整,可以显著提升查询速度。常用的SQL优化方法包括索引优化、分区策略、使用适当的统计信息等。 **2.2 内存管理** 合理配置内存参数对于提高Oracle数据库性能非常重要。主要包括SGA(Shared Global Area)和PGA(Program Global Area)的设置。SGA包括数据缓冲区、重做日志缓冲区、共享池等部分;而PGA则用于存储每个会话的私有数据结构。根据系统的具体负载情况动态调整这些参数可以有效提升系统性能。 **2.3 I/O优化** I/O操作通常是数据库性能瓶颈之一。为了减少I/O延迟,可以采取增加磁盘数量、使用更快的存储介质(如SSD)、分散数据文件等方式来改善I/O性能。 #### 三、Oracle数据库备份与恢复 数据备份与恢复是保障企业信息安全不可或缺的一环。Oracle提供了多种机制来确保数据安全并快速恢复。 **3.1 RMAN(Recovery Manager)** RMAN是Oracle提供的专门用于备份和恢复的工具。它可以自动完成全库备份、增量备份以及归档日志的备份等工作,并且支持基于文件、表空间甚至是数据块级别的恢复。 **3.2 手动备份** 除了使用RMAN外,还可以采用手动方式进行备份。例如,利用EXPDP/IMPDP命令导出导入数据文件;或者通过冷备份直接复制数据文件和控制文件等。手动备份虽然灵活性较高,但相比自动化工具来说可能存在一定的风险和不便之处。 **3.3 Flashback技术** Flashback是一系列与时间旅行查询相关的功能集合,包括闪回查询、闪回表、闪回事务查询、闪回数据库等。通过这些功能,用户可以在不恢复整个数据库的情况下查看某个时间点的数据状态,这对于数据恢复和问题排查非常有用。 在构建Oracle数据库时,必须充分考虑高可用性、性能优化及备份恢复等方面的需求。通过合理运用上述技术和方法,可以有效地提高数据库的稳定性和响应速度,为企业的业务发展提供强有力的支持。
2025-08-24 18:06:12 75.04MB Oracle 高可用性 性能优化 备份恢复
1
基于matlab的求解悬臂梁前3阶固有频率和振型 基于matlab的求解悬臂梁前3阶固有频率和振型,采用的方法分别是(假设模态法,解析法,瑞利里兹法) 程序已调通,可直接运行 ,Matlab; 悬臂梁; 固有频率; 振型; 假设模态法; 解析法; 瑞利里兹法,Matlab求解悬臂梁固有频率与振型程序 在工程领域,悬臂梁作为一种常见的结构形式,其动态特性分析对于结构设计和安全评估至关重要。固有频率和振型是表征结构动态特性的两个基本参数。固有频率是指结构在没有外力作用下,仅由其材料和形状所决定的振动频率;振型则是指在某一固有频率下的振动形态。掌握悬臂梁的固有频率和振型对于防止共振,提高结构安全性和可靠性具有重要意义。 本文档介绍了一种基于Matlab的计算方法,用于求解悬臂梁前三阶固有频率和振型。Matlab作为一种强大的数学计算和仿真工具,广泛应用于工程和科研领域。通过Matlab,可以方便地实现复杂算法和数据处理,对于工程问题的求解具有显著优势。 在研究过程中,采用了三种不同的方法来求解悬臂梁的固有频率和振型。首先是假设模态法,这种方法通过预先假设一些简单的振型,结合能量守恒原理来求解固有频率和振型。解析法是通过建立悬臂梁的微分方程,采用数学解析的方法来得到固有频率和振型的精确解。瑞利-里兹法是一种近似方法,通过选择合适的位移函数来简化问题,进而求得近似的固有频率和振型。 程序的开发和调试工作已经完成,可以直接运行,这为工程设计人员提供了一个高效的工具,用于快速准确地计算悬臂梁的前三阶固有频率和振型。这一成果不仅对悬臂梁的设计具有指导意义,还可以推广到其他结构的动态特性分析中。 由于悬臂梁在很多工程领域中都有应用,例如桥梁工程、建筑工程和机械工程等,因此本研究的成果具有广泛的应用前景。设计人员可以利用此程序快速评估悬臂梁在不同条件下的振动特性,为结构设计提供理论依据,从而提高设计的科学性和合理性。 对于激光熔覆技术而言,其仿真模型案例选用固的介绍也为相关领域的研究提供了参考。激光熔覆是一种材料表面强化技术,广泛应用于航空航天、汽车制造等行业。通过仿真技术,可以在实际加工前预测激光熔覆过程的热物理行为,优化工艺参数,从而达到提高生产效率和产品质量的目的。 文中提到的“istio”标签可能指向的是一种用于微服务架构的技术,这与Matlab和悬臂梁的研究看似无直接关联,但可能表明该文档在某种程度上与技术整合或跨领域应用有关。随着技术的不断发展,跨学科的整合应用成为趋势,这方面的内容可能为研究者提供了新的思路和视角。 在文件的压缩包中,除了本文档外,还包含了多个HTML文件和图片文件。这些文件可能包含了更详细的理论推导、仿真过程、实验结果以及相关的图表和图像。这些资料对于深入理解悬臂梁固有频率和振型的计算过程,以及验证Matlab程序的准确性和可靠性都是非常有帮助的。 本文档及相关的文件资料为工程设计人员提供了一套完整的解决方案,用于计算和分析悬臂梁的固有频率和振型。这一成果不仅有助于提高结构设计的科学性和可靠性,也促进了跨学科技术的融合与发展。
2025-08-23 16:49:40 1006KB istio
1
利用MATLAB计算悬臂梁前三阶固有频率和振型的三种方法:假设模态法、解析法以及瑞利里兹法。假设模态法通过选择满足边界条件的函数来近似求解,解析法直接求解微分方程得到精确解,而瑞利里兹法则通过选择合适的基函数进行能量最小化求解。文中不仅提供了具体的MATLAB代码实现,还对每种方法的特点进行了形象比喻,如假设模态法被形容为‘搭乐高’,解析法为‘暴力美学’,瑞利里兹法为‘调鸡尾酒’,使复杂的理论变得通俗易懂。此外,作者还分享了一些实用技巧,如避免积分错误、调整积分步长等。 适合人群:机械工程专业学生、从事结构动力学研究的研究人员、对振动分析感兴趣的工程师。 使用场景及目标:适用于希望深入了解悬臂梁振动特性的读者,帮助他们掌握不同的求解方法及其应用场景,同时提供可操作性强的MATLAB代码供实验验证。 其他说明:文中提到的三种方法各有优劣,在实际应用中可以根据具体需求选择最合适的方法。通过对比不同方法的结果,可以提高对振动现象的理解,增强解决实际工程问题的能力。
2025-08-23 16:13:32 419KB
1
基于二阶锥松弛与Distflow潮流的主动配电网优化规划模型:降低投资成本与运营成本,减少损失负荷价值,基于二阶锥松弛与Distflow潮流的主动配电网优化规划模型实现,基于二阶锥松弛和Distflow的主动配电网规划模型 摘要:代码主要做的是主动配电网的运行规划模型,为了解决规划模型中的非线性和非凸性,分别采用了二阶锥松弛和线性扰动两种方法对其进行处理,规划模型的目标函数是降低线路的投资成本以及运营成本,降低损失负荷价值(voll),算例中的Distflow潮流以及松弛模型均有参考文档 代码非常精品,注释几乎一行一注释; ,主动配电网规划模型;二阶锥松弛;Distflow;非线性和非凸性处理;降低投资与运营成本;降低损失负荷价值(voll);代码注释清晰。,二阶锥松弛与Distflow融合的主动配电网规划模型优化研究
2025-08-21 19:47:24 1.32MB ajax
1
涉及Excel常用快捷键,常用函数,多张表的合并,数据联动,数据透视表等等。这是初学者Excel进阶练习素材,初入职场新人必备技能。
2025-08-07 21:45:29 7.05MB Excel
1
内容概要:本文详细介绍了利用MATLAB绘制分数阶三维和四维混沌系统的吸引子相图及其复杂度和分岔图谱的方法。首先,通过分数阶Lorenz系统为例,展示了如何使用预估校正法绘制吸引子相图,并强调了步长控制的重要性。接着,探讨了Adomian分解法和预估校正法在不同情况下的应用,特别是在绘制分岔图时的表现。此外,还讨论了复杂度图谱的生成,包括双参数扫描和矩阵操作的应用。最后,介绍了李雅普诺夫指数谱的计算方法及其在确认混沌行为中的作用。 适合人群:对混沌系统、分数阶微分方程及MATLAB编程有一定了解的研究人员和技术爱好者。 使用场景及目标:① 学习并掌握分数阶混沌系统的相图绘制方法;② 探讨不同方法(如Adomian分解法和预估校正法)在分岔图绘制中的优劣;③ 分析复杂度图谱和李雅普诺夫指数谱,以评估系统的混沌特性。 其他说明:文中提供了详细的MATLAB代码示例,帮助读者更好地理解和实践相关理论。同时,提醒读者注意一些常见的陷阱,如复杂度对数据长度的敏感性和配色选择的影响。
2025-08-06 14:31:31 995KB
1
内容概要:本文详细介绍了一种利用MATLAB和递推最小二乘法(RLS)对锂离子电池二阶RC等效电路模型进行参数辨识的方法。首先介绍了数据读取步骤,包括从NASA官方获取电池数据并进行预处理。接着阐述了RLS的基本原理和实现过程,展示了如何通过不断更新参数估计值使模型输出与实际测量值之间的误差最小化。最后,通过实验验证了该方法的有效性和准确性,误差控制在3%以内,能够很好地反映电池的实际特性。 适合人群:从事电池管理系统(BMS)开发的研究人员和技术人员,尤其是对锂离子电池建模感兴趣的工程师。 使用场景及目标:①用于电池性能评估和优化;②提高电池管理系统的精度和可靠性;③为后续电池老化研究提供基础。 其他说明:文中提供了详细的MATLAB代码示例和一些实用的经验技巧,帮助读者更好地理解和应用这一方法。此外,还提到了一些常见的注意事项和可能遇到的问题,如电流正负号定义、初始SOC校准等。
2025-08-05 22:59:36 610KB
1
基于二阶RC电池模型的在线参数辨识与实时验证研究——使用FFRLS算法及动态工况下的电芯性能评估,二阶RC电池模型参数在线辨识(BMS电池管理系统) 使用遗忘因子最小二乘法 FFRLS 对电池模型进行参数辨识,并利用辨识的参数进行端电压的实时验证,基于动态工况,电压误差不超过20mv,也可以用来与离线辨识做对比,效果见图 内容包含做电池Simulink模型、电芯数据、推导公式、参考lunwen 程序已经调试好,可直接运行,也可以替成自己的数据 ,二阶RC电池模型参数;在线辨识;BMS电池管理系统;遗忘因子最小二乘法(FFRLS);参数辨识;端电压实时验证;动态工况;电压误差;Simulink模型;电芯数据;推导公式;参考lunwen(文章);程序调试;数据替换。,基于FFRLS的二阶RC电池模型参数在线辨识与验证
2025-08-05 10:39:47 210KB 数据仓库
1
6.5 时序裕量测试 在 6.2节针对接口时序进行了讲解。在实际应用过程中,由于环境应力原因,DDR3时 序容易产生漂移,从而引发时序问题。最典型的就是数据线的建立保持时间偏移。 下面是常用的裕量测试方法: 6.5.1 窗口扫描 窗口扫描的目的跟示波器测量建立保持时间的目的是一样的。就是获取当前时序所在 的窗口位置,看是否时序向一边偏移了。但是窗口扫描的方法跟示波器测量不一样。 示波器测量是直接通过座标卡建立保持时间。而窗口扫描的方法则是通过修改寄存器, 调整 DQS/DQ、CK/AC的相位关系,得出误码时的相位,间接反应建立保持时间。 下面具体举例说明窗口测试的原理。比如,下图是 DDR3 初始化及训练后的 DQS/DQ 相 位。 图 6-42 DQ-DQS 初始时序 将 DQ 相位逐步前移,使 DDR3 接口出现误码,那么这个相移量就是初始化训练后的左 边窗口大小。 图 6-43 DQ-DQS 时序左边界 将 DQ 相位逐步后移,使 DDR3 接口出现误码,那么这个相移量就是初始化训练后的右 边窗口大小。
2025-08-04 14:06:15 5.67MB DDR3 基础与进阶 硬件设计 参数详解
1