在本资源中,我们主要探讨的是利用机器学习中的回归算法来预测葡萄酒的质量。回归是一种预测性的建模技术,用于研究两个或多个变量间的关系,尤其是因变量与一个或多个自变量之间的关系。在这个实战案例中,我们将关注Lasso、Ridge和ElasticNet三种回归算法,它们都是线性模型的变种,特别适用于处理具有大量特征或者存在多重共线性的数据集。 让我们了解下Lasso回归(Least Absolute Shrinkage and Selection Operator)。Lasso回归在最小化平方误差的同时,引入了L1正则化项,这使得部分系数变为零,从而实现特征选择的效果。通过这种方式,Lasso不仅可以减少过拟合的风险,还能帮助我们理解哪些特征对目标变量的影响更为显著。 接着是Ridge回归(岭回归),它采用了L2正则化,即在损失函数中添加了特征权重的平方和。与Lasso不同,Ridge不会使系数完全变为零,而是将所有系数都缩小到一个较小的值,这样可以保持所有特征的贡献,同时降低模型复杂度,防止过拟合。 ElasticNet是Lasso和Ridge的结合体,它综合了两者的优点。ElasticNet引入了L1和L2正则化的线性组合,既保留了特征选择的能力,又保持了模型的稳定性。在特征之间有强相关性的情况下,ElasticNet往往比单独使用Lasso或Ridge表现更好。 在这个实战项目中,我们将使用葡萄酒质量数据集(winequality-red.csv),这是一个常见的多变量数据集,包含了红葡萄酒的各种化学属性,如酒精含量、酸度等,以及对应的葡萄酒质量评分。通过这个数据集,我们可以训练和比较上述三种回归模型的预测性能,通常我们会使用交叉验证来评估模型的稳定性和泛化能力。 10_葡萄酒质量预测.py 文件应该包含了整个分析过程的Python代码。代码可能涵盖了数据预处理(例如缺失值处理、特征缩放)、模型训练(使用sklearn库中的Lasso、Ridge和ElasticNet类)、模型评估(如均方误差、R^2分数等指标)以及可能的模型调优步骤。 这个实战案例旨在帮助我们理解和应用不同的回归算法,特别是在处理具有大量特征的数据集时,如何通过正则化技术来提升模型的预测能力和解释性。通过对Lasso、Ridge和ElasticNet的比较,我们可以更深入地理解它们在实际问题中的适用场景,为未来的工作提供有价值的参考。
2024-07-03 16:06:06 24KB 机器学习
1
监督学习-线性模型-2. 岭回归&Lasso回归
2024-06-01 20:10:14 263KB 线性回归 监督学习
1
fredmd_transformed数据集 线性回归 多项式回归 Lasso 岭回归 ElasticNet 等多种机器学习算法 预测模型 机器学习 numpy pandas sklearn 数据分析 数据挖掘 dates RPI W875RX1 DPCERA3M086SBEA CMRMTSPLx RETAILx INDPRO IPFPNSS IPFINAL IPCONGD IPDCONGD IPNCONGD IPBUSEQ IPMAT IPDMAT IPNMAT IPMANSICS IPB51222S IPFUELS CUMFNS HWI HWIURATIO CLF16OV CE16OV UNRATE UEMPMEAN UEMPLT5 UEMP5TO14 UEMP15OV UEMP15T26 UEMP27OV CLAIMSx PAYEMS USGOOD CES1021000001 USCONS MANEMP DMANEMP NDMANEMP SRVPRD USTPU USWTRADE USTRADE USFIRE USGOVT CES0600000007 AWOTMAN AWHMAN
2024-04-14 10:48:55 686KB Python 机器学习
1
各种算法来通过 Matlab 解决 LASSO 问题,包括: 投影梯度法,通过将原始问题重新表述为具有框约束的二次规划 原始问题的次梯度方法 平滑原始问题的梯度方法 平滑原始问题的快速梯度法 原始问题的近似梯度法 原始问题的快速近端梯度法 对偶问题的增强拉格朗日方法 对偶问题的乘法器交替方向法 原问题线性化乘法器的交替方向法 AdaGrad、Adam、RMSProp、使用次梯度的动量
2023-10-25 16:53:34 344KB matlab 算法 源码软件 开发语言
基于波士顿房价数据集,分别使用LinearRegressio,Lasso,ridge, Elastic net线性回归模型进行房价预测,对比模型优劣。适用于建模竞赛的模型选择与调参。 可在博主的机器学习算法专栏中找到对代码的逐句讲解。
2023-03-19 21:28:16 2KB 线性回归 机器学习
1
1. 构建了新的个人信用评估指标体系 2. 采用众数插补法对人口特征缺失数据进行插补 3. 使用聚类分析和分层抽样方法平衡样本数据 4. 使用Lasso-Log
2023-02-24 17:01:03 265KB
1
多重共线性是多元线性回归分析中的一个重要问题,消除共线性的危害一直是回归分析的一个重点。就此问题介绍了一种Lasso方法,并设计了一种选择最佳模型的方法。通过实例分析,将其与常用方法进行比较,从结果可看出,Lasso回归在处理多重共线性问题上较其他方法更加有效。
2023-02-02 07:14:22 726KB 自然科学 论文
1
Zou & Hastie(2005) 301-320 Regularization and variable selection via the elastic net.pdf
2023-02-02 04:14:07 302KB lasso larse regression beyesian
1
MATLAB实现LASSO分位数回归时间序列预测(完整源码和数据) 两个月数据,不同特征预测,预测80%间隔,不同特征选择误差,日前一天各个预测点的分位数,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。