二叉树是一种重要的数据结构,它由节点组成,每个节点最多有两个子节点,通常称为左子节点和右子节点。二叉树的概念在计算机科学中广泛应用于搜索、排序、文件系统等领域。本主题将深入探讨如何用源代码实现二叉树的建立、先序、中序、后序遍历,并讨论递归与非递归两种遍历方法。 我们要理解二叉树的基本操作。在C语言中,我们可以创建一个结构体来表示二叉树的节点,包含两个指针(left和right)分别指向左子节点和右子节点,以及一个用于存储数据的字段(如int data)。例如: ```c typedef struct Node { int data; struct Node* left; struct Node* right; } Node; ``` 接下来,我们将讨论如何构建二叉树。二叉树的构建通常涉及插入新节点。假设我们有一个函数`insertNode(Node** root, int value)`,该函数接受根节点的指针和要插入的值。如果根节点为空,我们就创建一个新的节点作为根;否则,我们根据值的大小决定将其插入左子树还是右子树。 对于遍历,有三种主要的方式:先序遍历、中序遍历和后序遍历。 1. **先序遍历**:访问根节点 -> 遍历左子树 -> 遍历右子树。递归实现如下: ```c void preOrderTraversal(Node* node) { if (node == NULL) return; printf("%d ", node->data); preOrderTraversal(node->left); preOrderTraversal(node->right); } ``` 非递归实现可以使用栈来辅助完成: ```c void preOrderTraversalNonRecursive(Node* node) { stack s; while (node != NULL || !s.empty()) { while (node != NULL) { printf("%d ", node->data); s.push(node); node = node->left; } if (!s.empty()) { node = s.top(); s.pop(); node = node->right; } } } ``` 2. **中序遍历**:遍历左子树 -> 访问根节点 -> 遍历右子树。递归实现: ```c void inOrderTraversal(Node* node) { if (node == NULL) return; inOrderTraversal(node->left); printf("%d ", node->data); inOrderTraversal(node->right); } ``` 非递归实现同样使用栈: ```c void inOrderTraversalNonRecursive(Node* node) { stack s; Node* curr = node; while (curr != NULL || !s.empty()) { while (curr != NULL) { s.push(curr); curr = curr->left; } if (!s.empty()) { curr = s.top(); s.pop(); printf("%d ", curr->data); curr = curr->right; } } } ``` 3. **后序遍历**:遍历左子树 -> 遍历右子树 -> 访问根节点。递归实现需要借助额外的栈或队列,这里仅展示递归实现: ```c void postOrderTraversal(Node* node) { if (node == NULL) return; postOrderTraversal(node->left); postOrderTraversal(node->right); printf("%d ", node->data); } ``` 非递归实现较为复杂,涉及到访问节点时的标记机制。 在`tree_01.c`文件中,很可能包含了这些功能的实现。通过阅读和理解这段代码,你可以更深入地了解二叉树的构造和遍历。对于二叉树的学习,不仅限于理解和编写代码,还需要理解其背后的逻辑和应用,这有助于提升你在算法和数据结构方面的技能。
2025-03-27 23:12:31 817KB 二叉树,递归遍历,非递归遍历
1
引导选择 bootstrap-select插件,可搜索的下拉框,对源代码做了一些修改,从而可以轻松获取所选择的值
2025-03-27 23:11:50 139KB 系统开源
1
图片和视频特质OpenCV 4 zh-cn Python(Windows,Linux,Raspberry) 内容代码示例,示例 ,Laurent Berger等文件03/01/2020辅助版本 。 硅CES exemples VOUSintéressent等阙VOUS n'avez PASacheté乐Livre的,知性VOUS invitons勒。 水果和果蔬的安全性要得到保护。
2025-03-27 21:43:10 97KB 系统开源
1
VISUAL BASIC程序开发范例宝典 明日科技 源代码 解压后301M 《软件工程师典藏:Visual Basic程序开发范例宝典(第2版)》全面介绍了Visual Basic程序开发所用到的技术和技巧。全书分为18章,内容包括窗体与界面、控件应用、数据处理技术、图形技术、多媒体技术、文件系统、操作系统与Windows相关程序、注册表、数据库技术、SQL查询相关技术、打印与报表技术、图表技术、硬件相关开发技术、应用与控制、网络开发技术、Web编程、加密、安全与软件注册等。全书共提供500个实例,每个实例都突出了其实用性。
2025-03-27 08:25:16 31.86MB VISUAL BASIC
1
在MATLAB环境中,存档算法代码是常见的实践,以便于保存、分享和复用工作。本项目名为"3d-sift",源自code.google.com/p/3d-scale-invariant-feature-transform(3D-SIFT)的开源项目,专门用于3D场景中的特征检测和描述。在MATLAB中实现3D-SIFT算法,对于计算机视觉和图像处理领域具有重要意义,特别是对于3D点云数据的处理和分析。 3D-SIFT算法是2D-SIFT(尺度不变特征变换)的扩展,2D-SIFT是David Lowe在1999年提出的,用于图像识别和匹配。3D-SIFT则将这一概念扩展到三维空间,能够从3D数据中提取稳健的、尺度和旋转不变的特征。在3D模型匹配、3D重建以及3D物体识别等应用中,3D-SIFT具有显著优势。 存档的代码通常包含以下几个部分: 1. **预处理**:3D数据通常需要进行预处理,如降噪、去噪和滤波,以提高后续特征检测的准确性。可能涉及的MATLAB函数有`medfilt3`(3D中值滤波)或`fspecial`(创建滤波器)等。 2. **尺度空间构建**:SIFT算法的核心在于尺度空间的构建,这通常通过高斯差分金字塔实现。MATLAB中可以使用`pyramid_gauss`或自定义的函数来创建这一金字塔。 3. **关键点检测**:在每个尺度层,通过检测局部极值点(局部最大或最小值)来找到关键点。MATLAB中可以利用梯度信息(如`gradient`函数)和Hessian矩阵(如`hessian`函数)来检测这些点。 4. **关键点精炼**:检测到的关键点可能不理想,需要进一步精炼。这包括去除边缘响应、消除重复点、稳定位置和尺度等。可能用到的MATLAB功能有`isoutlier`(检测异常值)和`uniquerows`(去除重复点)。 5. **方向分配**:为每个关键点分配一个主方向,使得描述子对旋转具有不变性。这可以通过计算局部梯度方向直方图来完成,MATLAB中的`histcounts`函数可辅助这一过程。 6. **描述子生成**:在每个关键点周围的小区域内采样梯度信息,生成描述子向量。这一步可能涉及`imgradient`或`edge`函数,以及自定义的采样策略。 7. **归一化和存储**:描述子向量通常会被规范化,并存储以便于后续的匹配和识别。 在"3d-sift-master"这个压缩包中,你可以期待找到与上述步骤相关的MATLAB脚本和函数。这些文件通常以`.m`后缀,例如`detect3DSIFT.m`可能包含了关键点检测的实现,`compute3DDescriptor.m`可能负责生成描述子,而`match3DSIFT.m`则可能用于特征匹配。 开源标签意味着这些代码是公开的,允许用户查看、学习、修改和分发。通过研究这些代码,你可以深入理解3D-SIFT算法的内部工作机制,也可以根据自己的需求进行定制和优化。此外,参与开源社区,你可以与其他开发者交流,获取反馈和建议,提升自己的编程技能和问题解决能力。
2025-03-26 18:07:17 121.75MB 系统开源
1
OpenSceneGraph是一个开源的高性能3D图形库,用于创建交互式实时应用程序,广泛应用于科学可视化、虚拟现实和游戏开发等领域。肖鹏的《OpenSceneGraph三维渲染引擎编程指南》是学习这一引擎的重要参考资料,提供了丰富的实例和源代码,帮助开发者深入理解和应用OpenSceneGraph。 在OpenSceneGraph中,核心概念包括场景图(Scene Graph)、渲染管线(Rendering Pipeline)和节点(Nodes)。场景图是一种数据结构,用来组织3D对象和它们之间的关系,类似于DOM树在网页中的作用。渲染管线则负责将场景图转换为屏幕上的图像,包括模型视图投影变换、光照计算、纹理映射等一系列步骤。节点是场景图中的基本元素,可以包含几何、材质、纹理、相机等信息。 源代码部分通常会涵盖以下知识点: 1. **基础设置**:如何初始化OpenSceneGraph库,创建并配置基本的渲染窗口,以及设置基本的相机视角。 2. **几何对象**:学习如何创建和加载各种3D几何形状,如点、线、面、多边形,以及更复杂的模型如Wavefront OBJ或Collada格式的导入。 3. **材质与纹理**:理解如何定义和应用材质属性,包括颜色、透明度、反射率等。同时,学习如何加载和应用2D纹理,以增强3D物体的视觉效果。 4. **光照与阴影**:掌握光源的类型(如点光源、平行光、聚光灯)和属性,以及如何模拟阴影来增加真实感。 5. **动画与运动**:学习如何实现物体的平移、旋转和缩放,以及更复杂的运动,例如关键帧动画和骨骼动画。 6. **相机控制**:了解如何创建和管理多个相机,实现视图切换,以及提供交互式的相机控制,如飞行模式或第一人称视角。 7. **事件处理**:学习如何响应用户的输入事件,如键盘、鼠标操作,以及如何实现交互功能。 8. **性能优化**:探讨如何利用OpenSceneGraph的特性进行渲染性能优化,如批处理渲染、硬件加速和内存管理。 9. **高级特性**:可能涉及到更复杂的主题,如粒子系统、体积渲染、地形渲染、网络同步等。 通过肖鹏的《OpenSceneGraph三维渲染引擎编程指南》及配套源代码,读者可以逐步熟悉和掌握这些知识点,从而能够熟练地利用OpenSceneGraph构建自己的3D应用程序。源代码的学习对于实践和理解这些理论概念至关重要,因为它们提供了实际操作的范例,使学习更为直观和高效。
2025-03-24 20:26:35 19.7MB OpenSceneGraph 三维渲染引擎
1
本文将详细讲解如何使用STM32L微控制器、ESP8266 Wi-Fi模块以及MQTT协议,将温湿度数据发送至阿里云物联网平台,并通过该平台远程控制继电器。这个项目结合了嵌入式系统、无线通信和云计算技术,为智能家居、环境监测等应用提供了一种有效的解决方案。 STM32L是意法半导体推出的一款超低功耗微控制器,基于ARM Cortex-M3或Cortex-M4内核。它具备丰富的外设接口,如ADC(模拟数字转换器)用于采集温湿度传感器的数据,SPI或UART接口可与ESP8266进行通信。 ESP8266则是一款经济高效的Wi-Fi模块,能够实现设备的无线连接功能。在这个项目中,它作为STM32L与阿里云物联网平台之间的桥梁,负责将STM32L收集的数据通过Wi-Fi发送到云端,并接收来自云端的控制指令,如开启或关闭继电器。 MQTT(Message Queuing Telemetry Transport)是一种轻量级的发布/订阅消息协议,广泛应用于物联网领域。它具有低带宽、低功耗和简单易用的特点,适合资源有限的嵌入式设备。在本项目中,STM32L通过ESP8266连接到MQTT服务器,发布温湿度数据,同时订阅阿里云物联网平台的控制命令。 在实现过程中,你需要编写STM32L的固件来处理传感器数据、设置ESP8266的串行通信以及定时发送数据。同时,也需要为ESP8266编写固件或配置AT命令,使其连接到阿里云物联网平台并遵循MQTT协议。在阿里云物联网平台上,创建产品、设备,获取连接所需的ID、密钥等信息,然后将这些信息配置到ESP8266的连接参数中。 在阿里云物联网平台上,你可以构建数据处理规则,例如当温湿度达到预设阈值时触发动作,向ESP8266发送控制继电器的指令。此外,还可以利用平台提供的可视化工具展示温湿度数据,以便实时监控环境状态。 这个项目涵盖了嵌入式开发、无线通信和云计算技术,涉及STM32L的编程、ESP8266的Wi-Fi配置、MQTT协议的使用以及阿里云物联网平台的集成。通过这个项目,开发者可以深入了解物联网应用的各个环节,提升相关技能。在实际操作中,应确保硬件连接正确,软件逻辑清晰,数据传输安全可靠,从而实现高效稳定的物联网系统。
2025-03-23 22:39:33 7MB stm32 阿里云
1
主界面为2D显示,包含深度数据生成的灰度与彩色图像,例如激光轮廓仪的CSV数据,还有轮廓线测量工具。子界面为3D显示,深度数据生成的3D图像,包含PLY文件等的可以打开。只是个显示工具展示,没有太多功能,就上面说的这些。
2025-03-18 15:28:32 111.98MB WPF
1
CARLA通用骨架,用于生成我们自己的4轮汽车。格式为*.fbx,支持的应用程序有Cinema4D,Maya,Autodesk 3ds Max,Wings3D,支持的引擎有Unity3D,Unreal Engine 3/UDK及Unreal Engine 4
2025-03-14 12:39:14 16KB 3D模型
1
https://blog.csdn.net/oSenLin123456/article/details/145864931 在数字化转型加速的背景下,企业应用系统对智能服务的需求日益增长。DeepSeek作为先进的人工智能服务平台,其自然语言处理、图像识别等核心能力可显著提升业务系统的智能化水平。传统开发模式下,C#开发者需要耗费大量时间进行API对接调试,而采用无代码接入方案可有效突破这一瓶颈。 (一)开发效率提升 时间成本优化:传统对接需3-5人日,无代码方案可将周期缩短至2小时内 人力投入减少:无需专职API开发人员,普通运维人员即可完成配置 知识传递简化:自动生成标准化文档,降低团队间沟通成本 (二)系统稳定性增强 内置重试机制:自动处理网络抖动等临时故障 智能熔断配置:根据历史数据自动设置服务降级阈值 依赖管理:自动检测第三方库版本冲突 健康检查:动态监控服务可用性
2025-03-12 16:10:38 4.95MB
1