FairMOTVehicle
A fork of FairMOT used to do vehicle MOT(multi-object tracking).
You can refer to origin fork
车辆跟踪,效果如下,此测试未经过训练(Results of vehicle mot is as follows, the video seq has not been trained):
使用UA-DETRAC公开数据集训练FairMOT(Using UA-DETRAC as training dataset for vehicle tracking)
UA_DETRAC是一个公开的车辆跟踪数据集, 共8万多张训练数据集,每一张图的每一辆车都经过了精心的标注。
训练方法(具体调用时,根据服务器目录, 修改自定义路径)
(1). 使用gen_labels_detrac.py脚本
UAVDT是一个具有大规模的挑战性的无人机检测和跟踪基准(即10小时原始视频中约8万帧的代表性帧),用于3项重要的基本任务,即目标检测(DET)、单目标跟踪(SOT)和多目标跟踪(MOT)。
数据集由无人机在各种复杂场景中捕获。本基准中关注的对象是车辆。使用边界框和一些有用的属性(例如,车辆类别和遮挡)对帧进行手动注释。
UAVDT基准由100个视频序列组成,这些视频序列是从城市地区多个地点的UAV平台拍摄的超过10小时的视频中选择的,代表各种常见场景,包括广场、主干道、收费站、高速公路、交叉口和T形交叉口。视频以每秒30帧(fps)的速度录制,JPEG图像分辨率为1080×540像素。
该数据集包含的是原始图片,不包括注释
参考:
D. Du, Y. Qi, H.g Yu, Y. Yang, K. Duan, G. Li, W.g Zhang, Q. Huang, Q. Tian, " The Unmanned Aerial Vehicle Benchmark:
This is a beta release for a suite of MATLAB based RFS filtering/tracking codes.The "_common" subdirectory of shared functions should be added to your MATLAB path.Run the "demo" script to see a preconfigured example.