为降低最大后验概率(MAP)超分辨率图像复原算法中模糊参数调整的复杂度,减少迭代运算量,提出了一种超分辨率复原新算法。先抽取一幅低分辨率图像作为参考图像,用其余低分辨率图像估计参考图像,通过训练模糊参数使估计的均方误差最小,自适应地估计最佳模糊参数。然后根据高分辨率图像和参考图像计算多项式之间的可类比性和估计误差变化的线性相关性,将训练结果直接用于超分辨率复原。复原时先利用最佳模糊参数将全部的低分辨率图像信息融合到高分辨率初始图像中,改进了复原运算的处理流程。相对于其他MAP复原算法,新算法不需要人工调整
2022-11-29 18:55:45
2.35MB
工程技术
论文
1