很好的HFSS软件的使用及学习教程,哈哈,看着下载吧
2025-10-25 23:49:00 2.35MB hfss
1
本书依托 ANSYS 原厂策划与安世亚太科技股份有限公司的专业支持,针对高速电路设计中日益突出的信号完整性(SI)、电源完整性(PI)及电磁干扰(EMI)问题,构建了 “理论分析 - 软件操作 - 工程实例” 三位一体的内容体系。全书共 11 章,系统覆盖信号完整性核心知识与 ANSYS 仿真工具应用:第 1 章奠定理论基础,解析高速电路定义、信号完整性的成因与分类,以及时域 / 频域特性等核心概念;第 2 章引入高速电路新设计方法学,对比传统与新型设计流程,详解布线前 / 后仿真的关键环节;第 3 章聚焦 ANSYS EDA 软件,包括三维高频电磁场仿真工具 HFSS、PCB 板级仿真工具 SIwave、电路系统仿真工具 Designer 及参数提取工具 Q2D/Q3D,逐一介绍其功能、操作流程及在信号完整性分析中的作用;第 4-11 章则深入具体问题,分别针对反射、有损耗传输线、串扰、电源完整性、差分线、缝隙与过孔、电磁辐射及场路协同仿真展开分析,结合大量原理仿真与工程实例,提供从问题机理到仿真步骤的完整解决方案。
2025-10-23 10:25:07 58.78MB 信号完整性 HFSS ANSYS
1
2.敏感性分析 分析变量微小变化所引起的敏感性. 3.调谐分析 经优化得到变量的最佳值后,通过手动微调该值来观察对结果的影响.
2025-10-13 10:40:27 6.05MB HFSS
1
### HFSS 源的设置及边界条件的设置 HFSS(High Frequency Structure Simulator)是一款高性能的电磁仿真软件,广泛应用于无线通信、雷达系统、集成电路等领域。本文将详细介绍HFSS中不同类型的源设置方法及其应用场景,并简要介绍边界条件的设置。 #### 一、HFSS中的源设置 在HFSS中正确设置源对于获得准确的仿真结果至关重要。常见的源类型包括: ##### 1. WavePort - **简介**:WavePort是一种常用的端口类型,主要用于模拟波导或同轴线等传输线结构的输入输出端口。 - **设置步骤**: - 选择一个波导或同轴线的端面作为WavePort的载体。 - 在菜单中选择`HFSS > Excitations > Assign > WavePort...`。 - 输入端口名称,并设置端口模式(单模或多模)。 - 设置端口的阻抗计算方式。 - 完成设置后,可以通过调整阻抗值来修改端口的S参数,无需重新计算。 ##### 2. LumpedPort - **简介**:LumpedPort常用于微带线、波导和双线等结构内部的源设置,可以自定义端口的阻抗。 - **设置步骤**: - 绘制双导线或其他需要设置端口的结构。 - 在所需位置绘制一个平面作为源的载体。 - 选择菜单`HFSS > Excitations > Assign > LumpedPort...`。 - 设置端口名称、阻抗和电抗。 - 完成设置。 ##### 3. Voltage/Current Source - **简介**:电压源/电流源适用于馈电系统尺寸远小于波长的情况。 - **设置步骤**: - 在需要馈电的位置绘制一个平面作为电压源的载体。 - 选择菜单`HFSS > Excitations > Assign > Voltage...`。 - 设置电压源的电压幅度和单位。 - 定义馈电部分的电场矢量。 - 完成设置。 ##### 4. IncidentWave - **简介**:IncidentWave用于模拟入射场,常用于散射截面的计算。 - **设置步骤**: - 选择一个平面作为入射波的载体。 - 选择菜单`HFSS > Excitations > Assign > IncidentWave...`。 - 设置波印亭矢量和电场的方向。 - 完成设置。 #### 二、边界条件的设置 在HFSS中,合理的边界条件设置对于提高仿真的效率和准确性同样非常重要。常见的边界条件包括: ##### 1. PEC(Perfect Electric Conductor) - **应用**:模拟理想的导体表面,不允许电场穿透。 - **设置**:在需要设置PEC的表面,选择菜单`HFSS > Boundaries > Assign > PEC...`。 ##### 2. PMC(Perfect Magnetic Conductor) - **应用**:模拟理想的磁导体表面,不允许磁场穿透。 - **设置**:在需要设置PMC的表面,选择菜单`HFSS > Boundaries > Assign > PMC...`。 ##### 3. Radiation Boundary - **应用**:模拟开放空间的边界,用于远场仿真。 - **设置**:在需要设置辐射边界的表面,选择菜单`HFSS > Boundaries > Assign > Radiation...`。 ##### 4. Floquet Port - **应用**:用于周期性结构的仿真,如天线阵列。 - **设置**:在需要设置Floquet Port的表面,选择菜单`HFSS > Boundaries > Assign > Floquet Port...`。 ### 总结 HFSS中源的设置及边界条件的选择直接影响仿真结果的准确性。合理设置不同的源类型可以帮助工程师更准确地模拟实际的电磁环境;而正确的边界条件则有助于减少计算资源的需求并提高计算速度。掌握这些设置技巧对于使用HFSS进行高效准确的电磁仿真至关重要。
2025-10-08 17:00:11 382KB
1
问题工程,为了请人帮忙定位问题用的。
2025-10-04 12:19:53 1020KB hfss
1
"基于HFSS的NFC线圈设计:13.56MHz RFID天线与匹配电路的参数化建模、性能分析及优化策略",NFC线圈设计#HFSS分析设计13.56MHz RFID天线及其匹配电路 ①在HFSS中创建参数化的线圈天线模型...... ②使用HFSS分析查看天线在13.56GHz工作频率上的等效电感值、等生电容值、损耗电阻值和并联谐振电阻值...... ③分析走线宽度、线距、走线长度、PCB厚度对天线等效电感值的影响...... ④并联匹配电路 串联匹配电路的设计和仿真分析..... ,NFC线圈设计; HFSS分析设计; 13.56MHz RFID天线; 参数化线圈天线模型; 等效电感值; 等效电容值; 损耗电阻值; 并联谐振电阻值; 走线宽度; 线距; 走线长度; PCB厚度影响; 匹配电路设计; 匹配电路仿真分析。,基于HFSS的13.56MHz NFC/RFID天线及其匹配电路设计与分析
2025-10-03 14:08:18 355KB istio
1
在微波工程和射频识别技术领域,微带线作为一种基础的传输媒介,其特性阻抗的设计与优化至关重要。特性阻抗的匹配直接影响到信号传输的效率和质量,而50欧姆的特性阻抗是射频通信中常用的标准阻抗值。为了设计出符合这一标准的微带线,并确保其在各种条件下仍具有良好的性能稳定性,需要借助于专业仿真软件HFSS(High Frequency Structure Simulator)进行微带线的三维建模和仿真分析。 微带线的设计原理涉及到信号传输的基本原理。微带线由介质基片、金属导带以及金属接地板组成。其中,介质基片起着支撑和引导电磁波传播的作用。由于介质基片的高介电常数,电磁场主要集中在导线和接地板之间的介质区域,这样便能减少辐射损耗。微带线中的电磁波在介质基片和空气两种介质中传播,因此需要引入等效介电常数概念,将微带线视作均匀介质处理,以简化分析。 等效介电常数的计算涉及到导体带宽度、介质基片厚度和介质的相对介电常数等参数。通过这些参数,可以计算出微带线的特性阻抗、相位常数、波长、相速度等特性参量。这些特性参量的计算表达式往往基于特定的经验公式,不同仿真软件可能会有不同的近似公式。 在设计过程中,首先需要创建微带线的3D模型,并设置激励。模型包括衬底、导线和空气部分,通过设置端口激励可以模拟信号的传输过程。求解频率和迭代次数的设置是为了确保仿真结果的准确性和收敛性。在此基础上,通过调节导体带的宽度参数width,可以控制微带线的特性阻抗,使其满足50欧姆的标准。 完成初步的模型搭建和参数设置后,需要通过灵敏度分析和统计分析对设计进行评估。灵敏度分析主要是观察目标值(即特性阻抗)在微小变化下对微带线阻抗的影响。而统计分析则是在给定高度height和宽度width随机组合的情况下,评估特性阻抗是否保持在预期的范围内,即50±2欧姆。这种分析有助于了解设计在制造公差范围内的可控性以及不同参数下的设计有效性。 最终,通过仿真结果的分析,可以发现当导体带宽度增加时,阻抗实部会呈现下降趋势。通过优化参数,可以确定使阻抗达到50欧姆的具体宽度值。在确定了这个宽度值后,进行的灵敏度分析和统计分析显示,设计在一定范围内是稳定的,制造公差对阻抗的影响可控,设计的有效性在不同的参数组合下得到了验证。 在技术实现上,需要注意的是,由于现实中可能存在的各种技术限制,如介质基片的非理想性、制作精度的限制等,实际的微带线特性阻抗可能会与理论计算有所差异。因此,在实际应用中可能需要进一步的实验和调整,以确保设计与预期性能的匹配。 通过HFSS软件进行微带线特性阻抗的优化与分析是一个复杂的过程,涉及到微带线的理论知识、仿真模拟、参数优化以及性能稳定性评估等多个方面。通过该过程设计出的微带线不仅能够满足特定的特性阻抗要求,而且能够在制造和使用中展现出较高的稳定性和可靠性。
2025-09-30 11:46:47 1.06MB RFID HFSS
1
HFSS(高频结构仿真)在天线仿真设计中的应用,涵盖了微带天线、馈电网络、波导裂缝天线、口径天线和阵列综合低副瓣等多种类型的天线设计。首先,文章探讨了微带天线的特点及其在HFSS中的电磁场分布和辐射性能的模拟;接着,讨论了馈电网络的设计,强调了传输线效应、阻抗匹配和功率分配的关键因素;然后,分别介绍了波导裂缝天线和口径天线的模拟过程,重点在于裂缝长度、宽度及波导形状对性能的影响;最后,针对阵列综合低副瓣天线,阐述了阵列单元布局、间距和馈电相位的优化方法。文中还提到了利用仿真软件编写脚本和使用优化工具来提高设计效率。 适合人群:从事无线通信领域的工程师和技术人员,尤其是对天线设计有深入研究需求的专业人士。 使用场景及目标:适用于需要进行天线设计和仿真的项目,旨在提升天线性能,优化设计方案,解决实际工程中的天线设计难题。 其他说明:文章不仅提供了理论指导,还结合具体实例展示了HFSS在天线设计中的强大功能,为读者提供了实用的操作指南。
2025-09-28 17:20:54 2.3MB
1
HFSS(High Frequency Structure Simulator)是一款广泛应用于电磁仿真领域的软件,尤其在微波、射频以及光学领域。TDR(Time Domain Reflectometry)是测量电缆和传输线特性的一种技术,常用于评估线缆的阻抗匹配、故障定位以及确定其电气长度。本实例将详细解释如何在HFSS中应用TDR方法来分析同轴弯头的特性。 在"Getting Started with HFSS: TDR for Coax Bend"这个实例中,我们将深入理解HFSS软件的基本操作和TDR技术的运用。我们需要打开文件`coax_bend_model.aedt`,这是HFSS的工作环境,包含了一个同轴弯头的三维模型。这个模型通常由几何结构、材料属性、边界条件和求解设置等部分组成。 HFSS的界面分为多个工作区,如设计树、模型视图、结果视图和控制面板等。设计树中包含了所有模型元素,包括几何形状、物理属性、边界条件等。在模型视图中,我们可以对同轴弯头进行3D可视化,通过旋转、缩放和平移查看模型的各个角度。 为了进行TDR分析,我们需要在HFSS中设置合适的求解器参数。这通常包括时间步长、终止时间、频率范围等。在本实例中,我们关注的是时间域响应,因此选择时间域求解器是关键。此外,还要设置合适的激励源,如脉冲源或阶跃源,以便模拟TDR信号。 接下来,我们将定义端口,这通常是同轴线的输入和输出端。端口的设置应确保它们能正确地代表实际的信号入射和反射情况。在HFSS中,可以通过绘制端口线或选择几何边界来创建端口。 完成模型设置后,我们运行求解器,让HFSS计算出TDR信号在同轴弯头中的传播和反射。求解过程可能需要一定的时间,具体取决于模型的复杂度和计算机性能。求解完成后,结果会保存在`coax_bend_model.aedtresults`文件中。 在结果分析阶段,我们可以查看TDR曲线,它展示了电压随时间的变化,揭示了信号在传输线中的反射和衰减。通过这些数据,我们可以计算出弯头的阻抗匹配情况,查找潜在的不连续性,甚至估算出弯头的物理特性,如弯头半径对信号质量的影响。 此外,`HFSS TDR For Coax Bend.pdf`可能是详细的操作指南或报告,它将提供更深入的解释,包括步骤解释、图形解读和可能遇到的问题及解决策略。这个PDF文件是理解HFSS TDR分析的重要资源,建议仔细阅读。 HFSS结合TDR技术可以帮助工程师们评估和优化传输线设备,尤其是涉及弯曲和不规则形状的部件。通过这个实例,学习者不仅可以掌握HFSS的基本操作,还能了解到TDR分析在实际工程问题中的应用。
2025-09-27 15:40:01 66.09MB HFSS
1
如何使用HFSS进行13.56MHz NFC线圈和RFID天线的设计与仿真。首先,通过参数化建模的方式,在HFSS中创建了线圈天线模型,重点讨论了线宽、间距、匝数、板厚等因素对天线性能的影响。接着,深入分析了天线的等效电感、电容、损耗电阻等关键参数,并探讨了不同参数对天线性能的具体影响。随后,文章讲解了并联和串联匹配电路的设计与仿真,强调了实际调试时需要考虑的因素,如寄生电容的非线性补偿。最后,分享了一些实战经验和常见问题的解决方案,如铺地层对磁场的影响。 适合人群:从事无线通信、射频识别(RFID)、NFC技术研发的工程师和技术爱好者。 使用场景及目标:适用于需要深入了解NFC线圈和RFID天线设计原理及仿真的技术人员,帮助他们掌握HFSS工具的使用技巧,提高天线设计的成功率。 其他说明:文章不仅提供了详细的理论分析,还结合了实际操作经验,使读者能够更好地理解和应用相关知识。
2025-09-25 16:16:51 926KB
1