@参考Python 机器学习基础教程 鸢尾花分类 一个简单的机器学习应用,构建第一个模型。 对鸢尾花的分类,根据测量数据进行,该测量数据则为特征。测量数据:花瓣的长度和宽度、花萼的长度和宽度,所有测量结果的单位为cm 我们的目标是构建一个机器学习模型 因为有已知品种的鸢尾花的测试数据,所以这是一个监督学习问题。我们要在多个选项中预测其中一个(品种)。这是一个分类(classsification)问题。可能的输出(鸢尾花的不同品种)叫做类别(class)。数据集中共有三个类别(setosa、versicolor、virginica)。对于一个数据点来说,它的品种叫做标签(label)。 1、初识
2023-04-21 20:06:58 865KB python python机器学习 python算法
1
这段时间,自己学习了一些有关机器学习的算法,现在拿鸢尾花分类来对这四种进行巩固与回顾。 这些算法都是直接使用的skearn库的算法,并未自己编写。 鸢尾花的降维 import matplotlib.pyplot as plt from sklearn.decomposition import PCA from sklearn.datasets import load_iris data = load_iris() y = data.target X = data.data pca = PCA(n_components=2) reduced_X = pca.fit_transform(X) re
2023-04-10 21:10:17 108KB 分类 鸢尾花
1
深度学习,代码示例,用一个简单的一层网络实现鸢尾花分类,经过500次传播,准确率可以达到90%以上。最后实现了准确率和损失值的可视化。
2022-12-19 12:27:21 151KB 深度学习 分类算法
1
鸢尾花数据,使用去掉第一行
2022-07-28 09:07:34 4KB 鸢尾花 分类
1
实现决策树对鸢尾花进行分类,决策树进行了可视化,分别使用了图片和pdf进行显示,相关代码下载即可运行。
2022-07-15 18:05:47 84KB python 机器学习 鸢尾花 决策树
1
SVM鸢尾花分类Python实现 基于SVM算法实现鸢尾花数据集分类 包括混淆矩阵输出
2022-07-06 21:05:41 133.17MB SVM 鸢尾花分类 混淆矩阵 python
1
人工智能-项目实践-鸢尾花分类-Python 基于BP神经网络实现鸢尾花的分类 本文用Python实现了BP神经网络分类算法,根据鸢尾花的4个特征,实现3种鸢尾花的分类。 算法参考文章:纯Python实现鸢尾属植物数据集神经网络模型 iris_data_classification_bpnn_V1.py 需使用 bpnn_V1数据集 文件夹中的数据 iris_data_classification_bpnn_V2.py 需使用 bpnn_V2数据集 文件夹中的数据 iris_data_classification_knn.py 需使用 原始数据集 文件夹中的数据 iris_data_cluster_sklearn.py 需使用 sklearn数据集 文件夹中的数据 不同数据集里数据都是一样的,只是为了程序使用方便而做了一些格式的变动。
一组鸢尾花数据,每一行数据由 4 个特征值及一个目标值组成。4 个特征值分别为:萼片长度、萼片宽度、花瓣长度、花瓣宽度。目标值为三种不同类别的鸢尾,分别为:Iris Setosa、Iris Versicolour、Iris Virginica
2022-06-17 16:06:32 3KB python 鸢尾花数据集
1
一、实验目的 了解分类问题的概念以及基于BP神经网络设计分类器的基本流程。 二、实验平台 MatLab/Simulink仿真平台。 三、实验内容和步骤 1. iris数据集简介 iris数据集的中文名是安德森鸢尾花卉数据集,英文全称是Anderson's Iris data set,是一种多重变量分析的数据集,包含150个样本。每个样本包含了五个元素,其中前四个为特征特征元素,分别为花萼长度、花萼宽度、花瓣长度、花瓣宽度,最后一个为品种信息,即目标属性(也叫target或label。包括山鸢尾Setosa、变色鸢尾Versicolour和维吉尼亚鸢尾Virginica三个品种)。所以iris数据集是一个150行5列的二维表。部分样本数据如下表所示: 2. 基于MatLab的学习器设计
2022-05-16 12:05:05 2.05MB 神经网络 人工智能 深度学习 机器学习
1
代码实现及说明 # python 3.6 # TensorFlow实现简单的鸢尾花分类器 import matplotlib.pyplot as plt import tensorflow as tf import numpy as np from sklearn import datasets sess = tf.Session() #导入数据 iris = datasets.load_iris() # 是否是山鸢尾 0/1 binary_target = np.array([1. if x == 0 else 0. for x in
2022-05-14 19:57:27 123KB ens low ns
1