内容概要:本文深入探讨了HD-TVP-VAR-BK模型在高维多变量DY溢出指数计算中的应用,重点介绍了该模型相较于传统TVP-VAR-BK模型的优势,如更高的维度处理能力和更快的运行速度。文中还详细讲解了利用Elastic Net方法进行降维处理的具体步骤,并通过R语言实现了从数据导入、预处理、溢出指数计算、频域分解到最终结果导出和图表绘制的完整流程。此外,文章强调了HD-TVP-VAR-BK模型在处理大规模经济和金融数据时的重要性和实用性。 适合人群:从事经济学、金融学研究的专业人士,尤其是那些关注高维数据分析和时间序列建模的研究人员。 使用场景及目标:适用于需要分析大量高维时间序列数据的研究项目,旨在揭示不同变量之间的动态关系和溢出效应。通过学习本文,读者可以掌握最新的高维数据分析技术和工具,提升研究效率和质量。 其他说明:虽然本文提供了详细的理论解释和代码实例,但在实际应用中仍需根据具体数据集的特点进行适当调整和优化。
2025-09-06 17:29:44 685KB Elastic
1
现有的因果发现算法通常在高维数据上不够有效。 因为高维降低了发现的准确性并增加了计算复杂性。 为了缓解这些问题,我们提出了一种三相方法,以利用特征选择方法和两种最先进的因果发现方法来学习非线性因果模型的结构。 在第一阶段,采用基于最大相关度和最小冗余度的贪婪搜索方法来发现候选因果集,并据此生成因果网络的粗略骨架。 在第二阶段,探索基于约束的方法以从粗糙骨架中发现准确的骨架。 在第三阶段,进行方向学习算法IGCI,以将因果关系的方向与准确的骨架区分开。 实验结果表明,所提出的方法既有效又可扩展,特别是在高维数据上有有趣的发现。
2025-08-20 09:33:50 3.06MB Causal discovery;
1
内容概要:本文介绍了基于RIME-DBSCAN的数据聚类可视化方法及其在Matlab中的实现。RIME-DBSCAN是一种改进的密度聚类算法,通过调整密度分布和距离计算,解决了传统DBSCAN算法在高维数据和复杂数据结构中的局限性。该方法通过Matlab平台实现了数据聚类,并结合可视化技术展示了聚类结果,帮助用户直观理解数据的分布和聚类效果。文章详细描述了项目的背景、目标、挑战、创新点及应用领域,并提供了具体的模型架构和代码示例。 适合人群:对数据挖掘、机器学习及聚类算法有一定了解的研究人员和技术人员,尤其是从事数据分析、数据可视化工作的专业人士。 使用场景及目标:①适用于处理高维数据和复杂数据结构的聚类任务;②通过可视化工具展示聚类结果,帮助用户理解数据分布和噪声点位置;③优化数据分析过程,为医疗、金融、电商、社交网络等领域提供数据支持。 其他说明:本文不仅介绍了RIME-DBSCAN算法的理论基础,还提供了具体的Matlab代码实现,便于读者动手实践。同时,文中提到的降维技术和参数选择策略也是项目中的重点和难点,需要读者在实践中不断探索和优化。
2025-04-29 09:45:43 32KB Matlab 数据聚类 可视化 高维数据处理
1
特征降维能够有效地提高机器学习的效率,特征子集的搜索过程以及特征评价标准是特征降维的两个 核心问题 。综述国际上关于特征降维的研究成果 ,总结并提出了较完备的特征降维模型定义 ; 通过列举解决特 征降维上重要问题的各种方案来比较各种算法的特点以及优劣 ,并讨论了该方向上尚未解决的问题和发展 趋势。
1
现有过滤型特征选择算法并未考虑非线性数据的内在结构,从而分类准确率远远低于封装型算法,对此提出一种基于再生核希尔伯特空间映射的高维数据特征选择算法。首先基于分支定界法建立搜索树,并对其进行搜索;然后基于再生核希尔伯特空间映射分析非线性数据的内部结构;最后根据数据集的内部结构选择最优的距离计算方法。对比仿真实验结果表明,该方法与封装型特征选择算法具有接近的分类准确率,同时在计算效率上具有明显的优势,适用于大数据分析。
1
高维数据聚类 (HDDC) 工具箱包含用于高维数据的高效无监督分类器。 该分类器基于适用于高维数据的高斯模型。 参考:C. Bouveyron、S. Girard 和 C. Schmid,高维数据聚类、计算统计和数据分析,2007 年
2022-09-17 16:48:22 40KB matlab
1
高维数据子空间聚类算法研究.pdf
2022-07-12 14:08:03 892KB 文档资料
人工智人-家居设计-高维数据可视化研究及在商业智能中的应用.pdf
2022-07-09 18:02:51 1.48MB 人工智人-家居
T-SNE可视化高维数据
2022-07-05 12:05:49 2KB T-SNE可视化高维数据
Note:由房价预测例子的学到,用Stacking的思维来汲取两种或者多种模型的优点 ipython的代码和数据集在我的GitHub中,链接在下面,下面的代码是在pycharm里运行的,差别不大。 #Step 1: 检视源数据集 import numpy as np import pandas as pd from sklearn.linear_model import Ridge from sklearn.model_selection import cross_val_score from sklearn.ensemble import RandomForestRegressor imp
2022-06-17 15:08:54 131KB kaggle le 分类
1