为了实现高光谱降维并保留重要的光谱特征,通过独立分量分析(independent component analysis,ICA)混合模型和高光谱线性模型的对比分析,提出了结合纯像元提取和ICA的高光谱数据降维方法。该方法通过估计虚拟维数(virtual dimensionality,VD)确定特征个数,采用自动目标生成过程(automatic target generation process, ATGP)从原始数据中提取纯像元向量,作为ICA算法的初始化向量,以负熵为目标函数产生独立分量,并通过高阶统计
1
2种主成分分析方法,高光谱降维,基于实测光谱数据,光谱解混,资源为代码,高光谱降维,基于实测光谱数据,光谱解混,资源为代码
2021-05-01 12:58:38 84KB 高光谱
1
本研究回顾了基于主成分分析PCA和判别分析LDA的降维方法及其扩展,包括经典主成分分析、概率主成分分析、核主成分分析,以及线性判别分析、局部保持降维、图形嵌入判别分析和半监督降维分析。
2019-12-21 21:10:54 1020KB PCA LDA 高光谱降维
1