马尔可夫转移场:一维时序信号至二维图像的转换与故障识别分类技术,马尔可夫转移场,将一维时序信号变为二维图像,而后便于使用各种图像分类的先进技术。 适用于轴承故障信号转化,电能质量扰动识别,对一维时序信号进行变,以便后续故障识别识别 诊断 分类等。 直接替数据就可以,使用EXCEL表格直接导入,不需要对程序大幅修改。 程序内有详细注释,便于理解程序运行。 只程序 ,马尔可夫转移场; 一维时序信号变换; 二维图像转换; 图像分类技术; 轴承故障信号转化; 电能质量扰动识别; EXCEL表格导入; 程序内详细注释。,基于马尔可夫转移场的时序信号二维化处理程序
2025-04-30 21:30:38 151KB
1
本案例介绍命名实体识别(NER)任务的背景、HMM的原理以及如何将数据应用于序列标记问题,帮助同学们建立坚实的理论基础。 同学们可以通过这个案例学习序列标记问题和HMM的理论基础,从而建立机器学习的核心知识,利用HMM知识去解决实际NER问题,从而加深对理论的理解和应用能力。
2025-04-29 10:51:11 285KB 机器学习
1
MCMC马尔可夫链蒙特卡洛模型(Python完整源码和数据) MCMC马尔可夫链蒙特卡洛模型(Python完整源码和数据) MCMC马尔可夫链蒙特卡洛模型(Python完整源码和数据) Python实现MCMC马尔可夫链蒙特卡洛模型(Markov Chain Monte Carlo)
2024-07-02 21:44:13 1.31MB python MCMC
马尔可夫链蒙特卡洛(Markov Chain Monte Carlo, MCMC)算法是一种用于模拟复杂概率分布的统计技术,特别适用于处理高维数据和贝叶斯统计中的后验分布计算。在MATLAB中,我们可以利用统计和机器学习工具箱(Statistics and Machine Learning Toolbox)中的`mcmc`函数来实现MCMC算法。 在这个例子中,我们关注的是使用MCMC进行贝叶斯线性回归。贝叶斯线性回归是一种统计方法,它将线性回归模型与贝叶斯定理相结合,允许我们对模型参数进行概率解释,并能处理不确定性。首先,我们需要生成一些带有噪声的线性数据,这里使用`linspace`和`randn`函数创建了X和Y的数据集。 接着,使用`fitlm`函数构建了一个线性回归模型。在贝叶斯框架下,我们需要定义模型参数的先验分布。在这个例子中,我们为截距和系数分配了均值为0、标准差为10的正态分布。似然函数通常基于观测数据,这里是假设误差服从均值为0、方差为1的正态分布,因此使用`normpdf`函数来表示。 目标函数是似然函数与先验分布的乘积的对数,这在贝叶斯统计中称为联合分布的对数。MCMC算法的目标是找到使得联合分布最大的参数值,也就是后验分布的峰值。 在设定MCMC的参数时,我们需要指定迭代次数(`numIterations`)、燃烧期(`burnIn`,用于去除初始阶段的不稳定样本)、初始状态(`initialState`)以及提议分布的协方差矩阵(`proposalCov`,影响采样的步长和方向)。`mcmc`函数用于创建MCMC对象,而`mcmcrun`函数则执行实际的采样过程。 采样完成后,我们可以分析采样结果,例如通过`chainstats`计算参数的统计量,如均值和标准差,以及使用`ksdensity`函数绘制参数的后验分布图,这有助于我们理解参数的不确定性范围。 除了上述的Metropolis-Hastings算法(`mcmcrun`函数默认使用的采样方法),MATLAB的统计和机器学习工具箱还提供了其他MCMC方法,如Gibbs采样和Hamiltonian Monte Carlo,它们在不同场景下各有优势。例如,Gibbs采样可以更有效地探索多维空间,而Hamiltonian Monte Carlo则利用物理动力学原理提高采样的效率和质量。 总的来说,MATLAB提供了一个强大且灵活的平台来实现马尔可夫链蒙特卡洛算法,使得研究人员和工程师能够处理复杂的贝叶斯统计问题,包括参数估计、模型选择和推断。通过熟悉这些工具和方法,用户可以更好地应用MCMC到各种实际问题中,如信号处理、图像分析、机器学习等领域的建模和分析。
2024-07-02 16:10:18 234KB matlab
1
别人当初花600块让我给写的马尔可夫预测代码,步骤详细,包教包会,你只要看完一遍,基本上就会加权马尔可夫预测了。
2024-03-27 21:14:58 913KB
1
本文考虑了连续时间马尔可夫决策过程中平均报酬的方差优化问题。 假设状态空间是可计数的,而动作空间是Borel可测量的空间。 本文的主要目的是在确定性平稳策略空间中找到方差最小的策略。 与传统的马尔可夫决策过程不同,方差准则中的成本函数将受到未来行动的影响。 为此,我们通过引入称为伪方差的概念将方差最小化问题转换为标准(MDP)。 通过给出伪方差优化问题的策略迭代算法,推导了原始方差优化问题的最优策略,并给出了方差最优策略的充分条件。 最后,我们用一个例子来说明本文的结论。
1
这是旨在复兴Alchemy2项目的尝试。 Alchemy 2.0包含原始Alchemy系统中的以下算法: 判别权重学习(投票感知器,共轭梯度和牛顿法) 生殖体重学习 结构学习 命题MAP / MPE推断(包括内存有效) 命题和惰性概率推理算法:MC-SAT,Gibbs采样和模拟回火 提升信念传播 支持本机和链接功能 块推论和学习具有互斥和穷举值的变量 EM(用于在学习过程中处理未知真值的地面原子) 不可分割公式的说明(即,不应分解为单独子句的公式) 支持连续的功能和领域 在线推论 决策理论 Alchemy 2.0的关键新功能是提升了推理算法(精确的和基于采样的)。 具体来说,它包括以下推理算法: 概率定理证明(提升加权模型计数) 重要性重要性提升 提升吉布斯采​​样 通过使用Alchemy,您同意接受license.txt中的许可协议 src /包含源代码和一个makefi
2023-12-12 19:42:48 1.92MB
1
通过考虑与速率常数参数和动力学模型结构误差相关的不确定性,在该研究中使用贝叶斯推断来评估α-pine烯的热异构化速率同意的后验分布。 α-pine烯的热异构化动力学模型显示具有数学上不适的系统,这使得难以应用基于梯度的优化方法进行速率常数评估。 贝叶斯推断将速率常数的后验概率分布与满足实验测量浓度的反应产物模型浓度和参数的先验概率分布的似然概率相关联。 马尔可夫链蒙特卡洛(MCMC)用于从后验分布中抽取样本,同时考虑贝叶斯推断关系。 本研究应用多项式随机游走Metropolis-Hastings来构建速率常数,置信区间和相关系数矩阵的直方图。 结果表明,考虑到不确定性,贝叶斯方法可以成功地应用于估计反应模型速率常数的置信区间。
1
针对用BaumWelch算法训练隐马尔可夫模型用于序列比对算法的搜索空间有限性容易陷入局部最优点的缺陷,提出一种用量子粒子群优化算法训练隐马尔可夫模型的生物多序列比对新方法。该方法克服了BaumWelch算法在收敛性能上的缺陷,在整个可行解空间中进行搜索。从BaliBASE数据库中选取测试例子进行数值实验,实验结果表明,所提算法优于BaumWelch算法,对标准例子进行的实验证明了算法的有效性。
2023-11-23 17:18:25 315KB
1
灰色预测是一种对含有不确定因素的系统进行预测的方法。灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。其用等时距观测到的反映预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。基本思想: ARIMA模型的全称叫做自回归移动平均模型,全称是(ARIMA, Autoregressive Integrated Moving Average Model)。也记作ARIMA(p,d,q),是统计模型(statistic model)中最常见的一种用来进行时间序列 预测的模型。 基本步骤: 1)导入实验数据。2)确定ARMA模型阶数。3)残差检验。4)给出结果 微分方程模型是我们在日常生活中比较常见并且比较重要的一种模型,我们在平时的课程中时经常会涉及到这种题型,像比如我们所遇到的牛顿第二定律就常遇到相关的问题。适用于基于相关原理的因果预测模型,大多是物理或几何方面的典型问题,假设条件,用数学符号表示规律,
2023-07-06 10:45:13 329KB matlab 隐马尔可夫模型
1