在金融领域中,随着技术的发展,风控面临着一系列新的问题和挑战。其中,欺诈手段的层出不穷以及团伙作案的隐蔽性提高,使得现有的风控系统难以应对。黑产和中介攻击手段的升级,如设备更换、联系人变化和不同作案场所等,进一步增加了风险识别的难度。此外,AI欺诈手段如换脸、换声等技术的使用,使得不法分子可以利用高逼真的生成式AI技术绕过摄像头采集,实施攻击。这些挑战导致了模型性能出现瓶颈,传统的建模方法难以应对日益高明的AI欺诈手段。 为应对这些挑战,王小东提出了基于大模型的多模态智能风控解决方案。大模型结合了自然语言处理(NLP)和计算机视觉(CV)的能力,可以对结构化和非结构化的数据进行分析处理。生成式大模型主要进行文本、视频、图像的生成,而其他非生成式大模型则以概率输出,能够在金融领域参与策略决策和应用。通过融合这些技术,金融机构可以更好地识别和预防各种新型风险。 文章中提到了一系列具体应用案例,包括身份证风控。不法分子利用各种手段对身份证进行造假,如脏污、字体造假、贴纸等,甚至进行拼接和人像替换,以绕过风控系统。此外,攻击手段还包括3D面具、电子头、AI换声等高技术含量的伪造行为。这些攻击手段的多样化和逼真性,使得金融机构必须提高其风控技术的水平。 在风控技术方案中,生成式大模型可以通过对话问答生成标签实现风控,而非生成式大模型则通过训练模型概率来实现。大模型结合小样本微调可以快速开发出针对性的风控策略。方案强调需要积累大量的正负样本,并且模型主干网络需要统一,而Head层可以不一致。 文章还探讨了大模型在金融风控中的可行性,提出将大模型与音视频通讯能力、智能客服、智能催收等多方面技术结合的可能性。例如,MaaS(Model as a Service)智能客服和智能营销能够提升客户服务效率,而RTC(Real-Time Communication)技术则可以实现实时风控。 金融风控正面临前所未有的挑战,而多模态智能风控方案的落地实践,特别是结合大模型的技术,提供了新的解决方案。这些方案不仅提高了模型性能,也拓宽了风控策略的应用范围。未来,金融风控技术将更加注重与人工智能技术的结合,以应对更加复杂和多变的风险挑战。
2025-06-14 15:05:12 10.7MB
1
内容概要:本文档详细解析了信息安全领域的实战项目(2025版),涵盖三大核心类型:数据安全防护类(如加密与脱敏、日志监控系统)、攻防对抗演练类(如渗透测试实战、电子取证与反诈)、合规与风控类(如等保2.0实施、GDPR数据治理)。介绍了关键技术工具链,包括漏洞检测(Nessus、Fortify)、数据保护(Vormetric加密网关、Splunk日志)、身份认证(多因素认证)、AI安全(天擎大模型、对抗样本生成技术)。列举了行业应用典型案例,公共安全领域(天擎大模型应用、视频侦查实战)和企业级安全建设(DevSecOps实践、零信任架构落地)。最后阐述了项目开发与实施要点(需求优先级、技术选型建议、风险规避策略)以及能力提升路径(入门阶段、进阶方向、实战资源)。 适合人群:信息安全从业者、网络安全工程师、数据安全分析师、攻防演练人员、合规与风控专员。 使用场景及目标:①帮助从业人员了解最新信息安全技术的应用和发展趋势;②为具体项目的规划、实施提供参考;③指导不同阶段从业者的能力提升路径。 阅读建议:读者应结合自身工作场景重点关注相关部分,对于技术选型和技术实现细节,可进一步深入研究文档提供的工具和技术。
2025-04-28 10:20:04 19KB 信息安全 渗透测试 AI安全
1
Python机器学习金融风控信用评分卡模型源码+数据,信用评分卡模型-逻辑回归模型 完整代码包 data:数据文件 code:代码文件 notebook:基于notebook的实现
2024-06-25 14:19:04 10.53MB python 机器学习 逻辑回归
1
参加魔镜杯风控算法大赛编写的程序。比赛要求根据国内网络借贷行业的贷款风险数据,包括信用违约标签、借款人特征、借款人网络行为原始数据,评判用户预期违约率,建立用户信用评分模型,模型性能用AUC值评判。算法由GBDT模型、logistic模型构成。
2024-05-08 21:46:53 7KB
1
拍贷“魔镜风控系统”从平均 拍贷“魔镜风控系统”从平均 拍贷“魔镜风控系统”从平均 拍贷“魔镜风控系统”从平均 拍贷“魔镜风控系统”从平均 拍贷“魔镜风控系统”从平均 拍贷“魔镜风控系统”从平均 拍贷“魔镜风控系统”从平均 400 个数据维度评估用户当前的信状态,给每借款 个数据维度评估用户当前的信状态,给每借款 个数据维度评估用户当前的信状态,给每借款 个数据维度评估用户当前的信状态,给每借款 个数据维度评估用户当前的信状态,给每借款 个数据维度评估用户当前的信状态,给每借款 个数据维度评估用户当前的信状态,给每借款 个数据维度评估用户当前的信状态,给每借款 个数据维度评估用户当前的信状态,给每借款 个数据维度评估用户当前的信状态,给每借款 人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个6个月内逾 个月内逾 期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来用户在未来 用户在未来 用户在未来 6个月内是否会逾期还款的概率。 个月内是否会逾期还款的概率。 个月内是否会逾期还款的概率。 个月内是否会逾期还款的概率。 个月内是否会逾期还款的概率。 个月内是否会逾期还款的概率。 个月内是否会逾期还款的概率。 问题转换成 问题转换成 问题转换成 2分类问题,评估指标为 分类问题,评估指标为 分类问题,评估指标为 分类问题,评估指标为 分类问题,评估指标为 分类问题,评估指标为 分类问题,评估指标为 AUC ,从 Master Master Master,LogInfoLogInfo LogInfo ,UpdateInfo UpdateInfo UpdateInfo 表中构建 表中构建 特征,考虑评估指标为 特征,考虑评估指标为 特征,考虑评估指标为 特征,考虑评估指标为 特征,考虑评估指标为 AUC AUC,其本质是排序优化问题,所以我们在模型顶层融合也使用基于 ,其本质是排序优化问题所以我们在模型顶层融合也使用基于 ,其本质是排序优化问题所以我们在模型顶层融合也使用基于 ,其本质是排序优化问题所以我们在模型顶层融合也使用基于 ,其本质是排序优化问题所以我们在模型顶层融合也使用基于 ,其本质是排序优化问题所以我们在模型顶层融合也使用基于 ,其本质是排序优化问题所以我们在模型顶层融合也使用基于 ,其本质是排序优化问题所以我们在模型顶层融合也使用基于 ,其本质是排序优化问题所以我们在模型顶层融合也使用基于 ,其本质是排序优化问题所以我们在模型顶层融合也使用基于 ,其本质是排序优化问题所以我们在模型顶层融合也使用基于 ,其本质是排序优化问题所以我们在模型顶层融合也使用基于 ,其本质是排序优化问题所以我们在模型顶层融合也使用基于 ,其本质是排序优化问题所以我们在模型顶层融合也使用基于 ,其本质是排序优化问题所以我们在模型顶层融合也使用基于 排序优化的 排序优化的 排序优化的 RANK_AVG RANK_AVG RANK_AVG融合方法。 融合方法。
2024-01-31 10:42:51 842KB 消费金融
1
天池比赛_金融风控_贷款违约预测.zip
2023-12-01 13:18:04 144KB
1
源码引见 直接装置即可、彩虹的东西还是十分完善了的。 此版本为彩虹易支付原作者二开版本,新加了很多功用,新功用:API退款,轮训支付,网银支付,京东支付, 实名认证更多功用本人登录演示后台 再带11套首页模板,比原版不晓得好用几,犹疑自己这短时间不断在国外无法搭建演示测试,但是这个精品必需搭建了! 这个比老版本好很多,全新支持2代支付宝支付,完整开源无任何加密,一出来我就买来研讨了!! 新版彩虹全开源,没有任何一个中央加密,便当二开!
2023-10-12 14:05:57 10.26MB 软件/插件
1
基于neo4j搭建金融风控图谱.rar基于neo4j搭建金融风控图谱.rar基于neo4j搭建金融风控图谱.rar基于neo4j搭建金融风控图谱.rar基于neo4j搭建金融风控图谱.rar基于neo4j搭建金融风控图谱.rar基于neo4j搭建金融风控图谱.rar基于neo4j搭建金融风控图谱.rar基于neo4j搭建金融风控图谱.rar基于neo4j搭建金融风控图谱.rar基于neo4j搭建金融风控图谱.rar基于neo4j搭建金融风控图谱.rar基于neo4j搭建金融风控图谱.rar基于neo4j搭建金融风控图谱.rar基于neo4j搭建金融风控图谱.rar基于neo4j搭建金融风控图谱.rar基于neo4j搭建金融风控图谱.rar基于neo4j搭建金融风控图谱.rar基于neo4j搭建金融风控图谱.rar基于neo4j搭建金融风控图谱.rar基于neo4j搭建金融风控图谱.rar基于neo4j搭建金融风控图谱.rar基于neo4j搭建金融风控图谱.rar基于neo4j搭建金融风控图谱.rar基于neo4j搭建金融风控图谱.rar基于neo4j搭建金融风控图谱.rar基于neo4
2022-11-21 15:26:41 901.59MB 机器学习 python 知识图谱
1
天池金融风控数据集,提供下载功能,可以下载看看,适合初学学习使用,目前上传的是训练集,最新版的,。。。。。
2022-11-02 22:05:43 166.77MB 数据挖掘
1
数据集字段含义 obs_mth是时间 bad_ind是标签,0为无逾期,1为曾经有逾期 uid是用户编码 ,每个用户有唯一编码 其余10个特征为匿名化处理特征 带有时间节点的某贷款产品数据,可以用于构建贷前风险控制模型以及评分卡
2022-10-28 17:05:19 5.65MB 金融信贷 评分卡 python 风控模型
1