内容概要:本文详细介绍了如何利用MATLAB构建一个基于颜色和纹理特征的图像检索系统。首先,通过HSV空间的颜色直方图提取颜色特征,确保特征更符合人类视觉感知。接着,结合灰度共生矩阵(GLCM)和局部二值模式(LBP)提取纹理特征,增强对图像纹理的识别能力。为了提高检索精度,引入了加权融合机制,允许用户通过滑动条动态调整颜色和纹理特征的权重。此外,文中还讨论了特征向量的归一化处理以及距离计算方法的选择,强调了这些步骤对检索性能的重要影响。通过对655张图像库的多次测试,展示了系统的高效性和灵活性,并提出了进一步优化的方向。
适合人群:从事数字图像处理的研究人员和技术爱好者,尤其是对MATLAB有一定基础的开发者。
使用场景及目标:适用于需要快速精准地从大量图像中查找特定图像的应用场景,如图像分类、相似图像搜索等。主要目标是通过颜色和纹理特征的综合应用,提高图像检索的准确性和用户体验。
其他说明:文中提供了详细的代码片段和实验数据,便于读者理解和复现。同时指出了一些常见的陷阱和优化建议,有助于读者避开开发过程中可能出现的问题。
1