Python语言下使用爬虫工具从求医问药网爬取、解析相应的数据内容,经处理融合后生成结构化数据文件。 以此文件可构建起以疾病为中心的医疗知识图谱,实体规模4.4万,实体关系规模30万。 医药领域知识图谱,主要包含实体约4.4万个,其中包括Check,诊断检查项目,3353;Department,医疗科目,54;Disease,疾病,8807;Drug,药品,3828;Food,食物, 4870;Producer,在售药品,17201;Symptom,疾病症状,5,998。 关系总计约30万条,主要包括属于、疾病常用药品、疾病宜吃食物、药品在售药品、疾病所需检查、疾病忌吃食物、疾病推荐药品、疾病推荐食谱、疾病症状、疾病并发疾病等。 属性包含疾病名称、 疾病简介、疾病病因、预防措施、治疗周期、治疗方式、治愈概率、疾病易感人群等
2024-11-06 17:13:06 14MB 健康医疗 知识图谱 json
1
Hough 变换(Hough Transform)是一种常用的检测图形的算法。主要原理是通过在参数空间中的投票统计来检测图像中的基本形状。 它通过搜索特定形状(如直线,圆,椭圆等)在参数空间的累加器中的局部最大值来检测形状。Hough 变换主要用于检测图像中的基本形状,如直线,圆等。 用于图像处理领域的经典算法,Hough直线检测、圆检测、椭圆检测的c++算法实现
2024-10-29 10:01:35 96.02MB 图像处理 霍夫变换
1
在气象数据分析和可视化中,Python已经成为了一种非常强大的工具,尤其在绘制色斑图方面。色斑图是一种常用于展示二维数据分布的图形,能够直观地反映出气象参数(如降水、温度等)的空间变化。本程序是专为气象领域设计的Python色斑图绘制程序,能够帮助研究人员和气象工作者快速、高效地生成专业级别的气象分布图。 我们要了解Python中的几个关键库在色斑图绘制中的作用: 1. **Matplotlib**:作为Python最基础的绘图库,Matplotlib提供了一系列函数用于创建各种类型的图表,包括色斑图。通过`matplotlib.pyplot`模块中的`pcolor`或`imshow`函数,我们可以轻松地绘制出二维的色斑图。 2. **Numpy**:处理数值计算的利器,Numpy库能帮助我们处理气象数据,如计算平均值、标准差等统计量,以及进行数据的重采样和平滑处理。 3. **Cartopy**:这是一个专门用于地理坐标系统的Python库,可以方便地绘制地图,并在地图上添加经纬网格、边界、城市标记等地理元素。 4. **Pandas**:数据处理框架,用于读取、清洗和组织气象数据,如CSV、NetCDF等格式的数据文件。 5. **Seaborn**:基于Matplotlib的统计图形库,提供了更高级的调色板和图例设置,使得色斑图的颜色分布更加美观且具有科学性。 在描述中提到的"降水分布色斑图"和"温度分布色斑图"的绘制过程中,我们需要做以下步骤: 1. **数据准备**:使用Numpy和Pandas读取并处理气象数据,将其转化为适合绘图的二维数组。 2. **设置地图投影**:利用Cartopy库,根据需要选择合适的地图投影方式,如Mercator、Lambert Conformal等。 3. **绘制色斑图**:用Matplotlib的`pcolor`或`imshow`函数绘制色斑图,根据数据的大小和分布自动生成颜色梯度。 4. **添加图例**:设置图例以表示颜色与气象参数的对应关系,可以使用`matplotlib.colorbar`函数生成颜色条。 5. **标注城市名称**:使用Cartopy的`add_feature`函数添加城市标记,可能需要额外的城市地理信息数据支持。 6. **添加标题和轴标签**:使用Matplotlib的`title`, `xlabel`, `ylabel`函数为图添加标题和坐标轴标签。 7. **保存和显示图像**:通过`savefig`函数将图像保存为PNG或其他图像格式,`show`函数则用于在屏幕上显示图像。 在提供的文件名"PicHttpService"中,虽然没有明确的扩展名,但通常此类服务可能涉及图像的HTTP请求、下载或者上传,可能是用来获取或展示色斑图的HTTP接口服务。在实际应用中,可以结合这样的服务实现色斑图的网络交互,例如动态更新气象数据并实时更新图像,或者将生成的图像分享到网页上。 "气象领域python色斑图绘制程序"是一个综合运用了Python数值计算、数据处理和图形绘制能力的工具,它可以帮助气象学者和从业人员更好地理解和展示气象数据,提高分析和报告的效率。通过熟练掌握这些技术,可以在气象研究、天气预报、气候模型等领域发挥重要作用。
2024-09-24 17:19:37 63.37MB python
1
可以在Qt项目内建立一个布局,然后布局内直接添加这个控件,便可以实现Halcon的ROI绘制了,本资源采用VS2015+Halcon12(halcon10导出)+Qt编写的demo程序,提供了控件源代码,并给出了如何调用这个控件的主界面程序;
2024-09-09 18:42:04 71.73MB 图像处理 机器视觉
1
在图像处理领域,图像融合是一项关键技术,它涉及将多个源图像的信息有效地整合在一起,以创建一个包含更多细节和更全面信息的新图像。本资源提供的压缩包"图像融合领域常用的测试集(已配准 可直接使用)"显然是为了支持研究人员和开发者在图像融合算法的开发与评估中使用。下面我们将详细探讨图像融合、配准以及测试集的重要性。 图像融合是通过结合来自不同传感器、不同时间或不同视角的多张图像,提取各自的优势,生成一个综合图像的过程。这种技术广泛应用于遥感、医学成像、计算机视觉等多个领域。例如,在遥感中,可见光图像和红外图像的融合可以提供更丰富的地表信息;在医学成像中,MRI和CT图像的融合有助于医生更准确地定位病变位置。 “已配准”是这个测试集的一个关键特性。图像配准是指将多张图像对齐,使其具有相同的几何结构。在图像融合中,配准至关重要,因为如果不进行配准,图像的对应部分可能不匹配,导致融合结果失真。配准方法包括基于特征的配准、基于区域的配准和基于变换模型的配准等,选择哪种方法取决于图像的特性和应用场景。 测试集在图像融合研究中起着决定性作用。一个良好的测试集应包含各种场景、条件和类型的图像,以便评估融合算法的性能。这些测试集通常会提供不同分辨率、不同光照条件、不同角度和不同传感器获取的图像对。在这个“MIX”压缩包中,我们可以期待找到这样的多样化图像集合,它可以帮助开发者测试其融合算法在不同情况下的表现,从而优化算法并提高其泛化能力。 对于测试集的评价,通常使用一些客观指标,如互信息、均方误差(MSE)、结构相似度指数(SSIM)等。这些指标可以帮助量化融合结果的质量,比如对比度、清晰度、保真度等方面。同时,主观评价也是重要的,通过视觉检查来评估融合图像是否自然、是否有信息损失等。 这个“图像融合领域常用的测试集(已配准 可直接使用)”为研究者和开发者提供了一个宝贵的资源,可以加速图像融合技术的发展和改进。使用这个测试集,他们能够便捷地验证和比较不同融合算法的效果,推动图像处理技术的进步。在实际应用中,优秀的图像融合技术不仅可以提升数据的解释性和分析的准确性,还能为各种领域的决策提供强有力的支持。
2024-09-04 13:46:17 4.16MB 图像处理
1
阿伏加德罗 Avogadro是一款先进的分子编辑器,设计用于计算化学,分子建模,生物信息学,材料科学及相关领域中的跨平台使用。 它提供了灵活的呈现和强大的插件体系结构。 跨平台:适用于Windows,Linux和Mac OS X的分子构建器/编辑器。 免费,开源:易于安装,所有源代码都可以在GNU GPL下获得。 国际性:翻译成25种以上的语言,包括中文,法语,德语,意大利语,俄语和西班牙语,还有更多语言可供选择。 直观:专为学生和高级研究人员而设计。 快速:支持多线程渲染和计算。 可扩展:开发人员的插件架构,包括渲染,交互式工具,命令和Python脚本。 灵活:功能包括Ope
2024-08-23 11:45:12 17.38MB visualization windows linux mac
1
随着科技的飞速进步,人工智能(Artificial Intelligence, AI)正逐步渗透到各个行业,其中包括护理领域。在当前社会背景下,护理工作面临诸多挑战,如人口老龄化、疾病谱的转变以及医疗资源的紧张,这些都使得护理人员承受着巨大的压力。为了应对这些挑战,科研人员积极探索如何利用人工智能技术提升护理工作的效率与质量。 在应用现状方面,人工智能在护理领域的应用主要体现在三个方面:护士职业替代、患者护理以及健康管理。自动化护理和智能护理助手是护士职业替代的主要形式。自动化护理系统能通过传感器和监测设备自动收集并处理患者的生命体征数据,减轻护士的工作负担。智能护理助手则结合自然语言处理技术,帮助护士进行病情分析、药物管理,提升护理的精确度和及时性。 对于患者护理,人工智能可以通过机器学习算法对患者进行细分,制定个性化的护理方案。同时,智能传感器能实时监控患者的状态,预警潜在的健康风险,确保及时响应。此外,聊天机器人也能辅助进行心理疏导,改善患者的情绪,促进康复。 在健康管理领域,人工智能技术通过实时监测健康数据,实现早期预警,预防疾病的发生。通过深度学习和大数据分析,AI可以提供定制化的健康建议,优化患者的生活方式,以提升整体生活质量。 在研究方法上,人工智能在护理领域的应用涉及数据收集、处理和评估。数据收集阶段,需要从多源获取护理相关的各类数据,包括临床、生理、行为等,然后进行预处理,如数据清洗和标注。接着,采用机器学习和深度学习算法对数据进行建模分析,提取关键信息,如疾病预测模型、护理决策支持系统等。通过严谨的评估和优化,确保模型的准确性和实用性。 目前,应用于护理领域的算法种类多样,包括决策树、支持向量机、神经网络等,它们在数据分类、预测和聚类等方面发挥重要作用。数据挖掘技术则用于从海量数据中挖掘潜在规律,为护理实践提供更深入的见解。例如,通过挖掘患者的病历数据,可以揭示影响病情演变的关键因素,指导护理策略的制定。 未来展望方面,人工智能在护理领域的应用将更加广泛和深入。随着技术的不断发展,人工智能将在提升护理质量和效率的同时,也为护理人员提供更多的决策支持,进一步优化医疗资源分配,改善患者体验,推动护理学科的进步。同时,伦理、隐私保护以及人机协作等问题也将成为未来研究的重要议题。
2024-08-14 22:10:31 997KB
1
AI人工智能教育应用领域个性化学习30例.docx
2024-08-12 10:25:55 21KB
1
马颂德和张正友是机器视觉领域的大牛,他们的著作《计算机视觉》可以帮助视觉科研者们掌握这个领域的一些很有用的东西,是难得一见的好教材
2024-07-10 13:34:00 13.91MB 机器视觉领域的经典
1
社交网络分析技术是一种通用有效的研究社会人员之间复杂关系模式的方法。以公安领域为背景,首先介绍了社交网络分析理论,然后详细阐述该技术在公安领域的3个应用案例,包括犯罪团伙挖掘、核心成员识别和串并案挖掘,以期为读者了解社交网络分析技术在公共安全领域的应用提供帮助。
2024-07-05 21:13:22 1018KB
1