简述 模型的应用数据集为PHM2012轴承数据集,使用原始振动信号作为模型的输入,输出为0~1的轴承剩余使用寿命。每一个预测模型包括:数据预处理、预测模型、训练函数、主程序以及结果输出等五个.py文件。只需更改数据读取路径即可运行。【PS: 也可以改为XJTU-SY轴承退化数据集】 具体使用流程 1.将所有的程序放在同一个文件夹下,修改训练轴承,运行main.py文件,即可完成模型的训练。 2.训练完成后,运行result_out.py文件,即可输出预测模型对测试轴承的预测结果。
2025-05-07 11:25:43 701.91MB
1
本项目“毕业设计源码-python155基于贝叶斯网络的城市火灾预测方法-项目实战.zip”,主要致力于运用贝叶斯网络对城市火灾进行预测。其功能在于,通过收集城市中与火灾相关的各类因素数据,如建筑特征、电气设备情况、火源分布、气象条件等,构建起全面的数据库。基于这些数据,利用贝叶斯网络强大的概率推理能力,建立起城市火灾预测模型,从而对城市中不同区域在特定时间内发生火灾的概率进行预测,辅助城市管理者提前制定有效的消防策略和资源配置计划。项目框架主要包括数据采集与预处理、贝叶斯网络模型搭建与训练、预测结果输出与分析等模块。开发此项目旨在为城市消防安全提供一种科学、有效的预测手段,提高城市应对火灾的能力。 项目为完整毕设源码,先看项目演示,希望对需要的同学有帮助。
2025-04-25 14:25:44 15.23MB python 源码 Django flask
1
### 风电功率预测方法综述 #### 一、引言 近年来,随着全球对清洁能源的需求日益增加,风能作为一种重要的可再生能源形式受到了广泛关注。然而,风力发电的间歇性和不确定性对电网的安全稳定运行构成了挑战。为了解决这一问题,风电功率预测成为了关键的技术环节之一。本文将根据《风电功率预测方法综述》的内容,详细介绍当前风电功率预测的主要方法和技术,并分析其在实际应用中的局限性及未来发展方向。 #### 二、确定性预测方法 ##### 2.1 统计学习方法 统计学习方法是风电功率预测中的一种常见手段,它主要依赖于历史数据来进行预测。这类方法的核心思想是通过分析历史风速、风向等气象数据与风电场实际发电量之间的关系,建立数学模型来预测未来的发电功率。常见的统计学习算法包括但不限于时间序列分析、支持向量机(SVM)、神经网络(NN)等。 - **时间序列分析**:利用过去的数据序列来预测未来趋势,适用于短期预测。 - **支持向量机(SVM)**:通过构建最优分类超平面来实现非线性数据的分类和回归预测,对于处理高维数据有较好的性能。 - **神经网络(NN)**:模拟人脑神经元结构,通过训练调整权重参数来实现复杂函数的拟合,适用于处理非线性关系较强的数据集。 ##### 2.2 物理模型 与仅依赖历史数据的统计学习方法不同,物理模型更加注重气象学原理的应用,通常会结合数值天气预报(NWP)数据作为输入来提高预测精度。这种方法能够更准确地反映风力发电过程中的物理机制,例如风速的变化、温度、湿度等因素的影响。常见的物理模型包括: - **基于物理的模型**:这些模型通常需要大量的气象输入数据,如风速、风向、气压等,并考虑地形、地表粗糙度等因素的影响。 - **混合模型**:结合统计学习方法与物理模型的优点,既考虑了物理机制又利用了历史数据的趋势特征,从而提高了预测准确性。 #### 三、概率性预测方法 概率性预测方法旨在评估预测结果的不确定性,通过提供预测值的分布信息来帮助决策者更好地理解风险。这类方法不仅给出单一的预测值,还提供了该值的概率分布或置信区间,使得电力调度人员可以根据不同的风险偏好制定相应的调度策略。常见的概率性预测方法包括: - **蒙特卡洛模拟**:通过随机抽样来估计预测结果的分布,适用于处理复杂系统的不确定性。 - **贝叶斯方法**:基于贝叶斯定理,通过先验概率和似然函数更新后验概率,适用于处理小样本数据的情况。 - **可信区间估计**:通过计算预测结果的可信区间来表示预测结果的不确定性范围。 #### 四、风电爬坡事件预测 风电爬坡事件是指在短时间内风力发电功率发生剧烈变化的现象,这种现象对电网的安全稳定运行构成严重威胁。因此,准确预测爬坡事件对于保障电网安全至关重要。目前,针对风电爬坡事件的预测方法主要包括: - **基于机器学习的方法**:利用机器学习算法识别导致爬坡事件的关键因素,如风速突变等。 - **基于物理模型的方法**:结合气象学原理,通过分析风速变化的趋势来预测可能发生的爬坡事件。 - **综合模型**:结合多种预测方法的优势,通过集成学习等方式提高预测准确性。 #### 五、面临的挑战与未来方向 尽管风电功率预测技术已经取得了显著的进步,但仍存在一些挑战需要克服,例如: - **数据质量与完整性问题**:高质量的历史数据对于建立准确的预测模型至关重要,但实际收集过程中往往面临数据缺失、噪声等问题。 - **多尺度预测能力**:现有的预测模型在短时预测方面表现较好,但在更长的时间尺度上预测准确性下降。 - **模型的泛化能力**:如何让预测模型能够在不同地区、不同气候条件下保持良好的预测效果是一大挑战。 为了应对这些挑战,未来的研究可以从以下几个方面入手: - **开发更加智能的数据预处理技术**:提高数据的质量和可用性,减少噪声的影响。 - **融合多种预测方法**:通过集成学习等技术,结合不同方法的优点,提高预测的鲁棒性和准确性。 - **引入深度学习等先进技术**:利用深度学习强大的特征提取能力和模式识别能力,进一步提升预测精度。 - **加强跨学科合作**:结合气象学、电力系统学等多个领域的研究成果,共同推动风电功率预测技术的发展。 风电功率预测是一项复杂而重要的任务,涉及到多个学科领域的知识和技术。随着相关技术的不断进步和发展,我们有理由相信未来风电功率预测将会变得更加准确可靠,为实现清洁可持续能源的目标做出更大贡献。
2025-04-22 21:54:00 1.05MB
1
一、简介 针对滚动轴承存在性能退化渐变故障和突发故障两种模式下的剩余使用寿命(remaining useful life,简称RUL)预测困难的问题,提出一种结合卷积神经网络(convolution neural networks,简称CNN)和长短时记忆(long short term memory,简称 LSTM)神经网络的滚动轴承 RUL预测方法。首先,对滚动轴承原始振动信号作快速傅里 叶变换(fast Fourier transform,简称FFT;其次,将预处理所得到的频域幅值信号进行归一化处理后,将其作为 CNN 的输入,并利用 CNN自适应提取局部内在有用信息,学习并挖掘深层特征,避免传统算法需要专家大量经验 的弊端;然后,再将深层特征输入到 LSTM网络中,构建趋势性量化健康指标,同时确定失效阈值;最后,运用移动平均法进行平滑处理,消除局部振荡,再利用多项式曲线拟合,预测未来失效时刻,实现滚动轴承 RUL 预测。实验结果表明,所提方法构建的趋势性量化健康指标在两种故障模式下都具有良好的单调趋势性,预测结果能够较好地 接近真实寿命值。 ————————————————
2025-03-27 17:08:36 376.1MB Matlab
1
风功率预测是能源领域的重要研究课题,特别是在可再生能源利用中占据关键地位的风电场运营中。随着技术的进步,神经网络模型被广泛应用于风功率预测,因其强大的非线性建模能力,能有效处理复杂的气候数据变化。本项目是基于神经网络的风功率预测在MATLAB环境下的具体实现。 我们要理解神经网络的基本概念。神经网络是一种模拟人脑神经元工作原理的计算模型,由大量的节点(神经元)和连接这些节点的边(权重)构成。在风功率预测中,神经网络可以学习并捕获风速、风向等气象参数与风力发电量之间的复杂关系。 MATLAB是一个强大的数学计算软件,它提供了丰富的神经网络工具箱(Neural Network Toolbox),用于构建、训练和测试各种类型的神经网络模型。在这个项目中,我们可能会用到如Feedforward网络(前馈网络)或者Recurrent Neural Networks(循环神经网络),它们都能处理时间序列数据,适合风功率这种具有时间依赖性的预测任务。 文件"yucemin5.m"很可能是实现神经网络模型的MATLAB代码。在这个文件中,开发者可能定义了神经网络结构,如输入层(风速、风向等气象参数)、隐藏层以及输出层(预测的风功率)。同时,它可能包含了训练网络的步骤,如设置学习率、迭代次数等,并使用反向传播算法优化权重。 文件"fengsu5min.mat"和"gonglv5min.mat"是数据文件,分别存储了5分钟间隔的风速和风功率数据。在MATLAB中,.mat文件常用来存储变量或数据集。这两个文件的数据可能被读入到代码中,作为训练和测试神经网络模型的输入。风速是直接影响风力发电机输出功率的关键因素,而风功率则是我们需要预测的目标变量。 在实际应用中,预测模型通常需要经过以下步骤: 1. 数据预处理:清洗数据,处理缺失值,可能需要对风速和风功率进行归一化或标准化操作,以便更好地适应神经网络的训练。 2. 特征选择:选取对风功率影响较大的气象参数作为输入特征。 3. 模型构建:在MATLAB中创建神经网络结构,设定网络层数、节点数、激活函数等。 4. 训练模型:使用历史数据训练神经网络,调整网络参数以最小化预测误差。 5. 验证与调优:通过交叉验证或保留一部分数据来评估模型性能,根据结果调整网络参数或改进模型。 6. 预测:将训练好的模型应用于新的风速数据,得到未来风功率的预测值。 在风功率预测领域,准确的预测可以帮助风电场运营商更有效地调度电力系统,提高经济效益。因此,不断探索和优化预测模型,如使用更先进的神经网络架构,如LSTM(长短时记忆网络)或GRU(门控循环单元),以及集成学习等方法,都是持续的研究方向。
2024-12-09 15:14:49 40KB 风功率预测 神经网络 MATLAB
1
传统的小波神经网络以梯度下降法训练网络,而梯度下降法易导致网络出现收敛早熟、陷入局部极小等问题,影响网络训练的精度。文章将萤火虫算法用于训练小波神经网络,在全局内搜寻网络的最优参数。为了提高萤火虫算法参数寻优的能力,在训练过程中自适应调节γ值。同时利用高斯变异来提高萤火虫个体的活性,在保证收敛速度的同时避免算法陷入局部极小。将优化后的小波神经网络用于短期负荷预测,实验证明改进后的预测模型非线性拟合能力较强、预测精度较高。
2024-09-15 20:58:26 172KB 小波神经网络
1
带油环凝析气藏气顶油环协同开发过程中,地层压力的不断降低导致气顶发生反凝析现象,油环中的溶解气不断逸出,同时还伴随着原生水蒸发、岩石流体膨胀、边底水侵入等变化。综合考虑以上影响因素,在烃类流体物料守恒原理的基础上,建立带油环凝析气藏地层压力预测方法。将该方法应用于某实际带油环凝析气藏中。计算结果表明:该方法得到的地层压力与关井实际测压数据吻合较好,具有一定的可靠性;在衰竭开采方式下,气顶采气速度和油环采油速度的增加都会加速地层压力的下降;在气顶孔隙体积大于油环的孔隙体积条件下,气顶采气速度的增加更容易加快
2024-04-02 11:43:11 1020KB 自然科学 论文
1
为掌握采空区上方所建高速公路的变形趋势,解决老采空区上方地表变形监测数据较少,不易建立时序沉降预测模型的问题,利用D-InSAR(Differential Interferometric Synthetic Aperture Radar)技术对某高速公路进行了变形监测和分析,同时将其结果同地面实测数据相融合,并以LS-SVM(Least Squares-Support Vector Machine)为基础,建立了采空区上方高速公路变形预计模型,通过实例,验证了模型的正确性。具体过程:处理融合数据为等时间间隔,并将其趋势项去除,对余项进行平稳性、正态性及零均值处理;利用Cao方法计算嵌入维数,建立训练样本集,并进行LS-SVM学习训练;最后,采用训练好的模型对未来地表沉降进行预计。以511号监测点为研究对象,建立滚动预计方法,结果显示其最大下沉绝对误差3 mm,最大相对误差2.2%,取得了较为可靠的预计成果。
2024-03-01 17:04:20 1.88MB 行业研究
1
瓦斯涌出量预测是瓦斯防治的重要技术环节。在综合分析开滦钱家营矿-850 m水平7煤层地质条件和采掘顺序的基础上,探讨了Gm(1,1)模型预测矿井瓦斯涌出量的方法。依据预测结果,确定矿井瓦斯涌出量的动态变化和总的趋势,为煤矿安全生产提供技术保障。
2024-02-28 16:08:33 134KB 灰色系统理论 瓦斯涌出量 地质条件
1
滑动轴承在线磨损监测中的灰色预测方法,武通海,丁鑫,本文以滑动轴承磨损的预测为目标,探讨了基于在线磨损数据的趋势预测方法。采用在线监测获取的磨粒百分覆盖面积指数(IPCA:Index of
2024-01-09 23:06:56 240KB 首发论文
1