基于粒子群算法优化深度置信网络(PSO-DBN)的数据回归预测,优化参数为隐藏层节点数目,反向迭代次数,反向学习率,利用交叉验证抑制过拟合问题,matlab代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-03-11 19:15:00 42KB 网络 网络
1
基于麻雀算法优化深度置信网络(SSA-DBN)的数据回归预测,优化参数为隐藏层节点数目,反向迭代次数,反向学习率,利用交叉验证抑制过拟合问题,matlab代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-03-11 19:12:59 42KB 网络 网络
1
基于麻雀算法优化深度置信网络(SSA-DBN)的分类预测,优化参数为隐藏层节点数目,迭代次数,学习率。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2023-12-07 13:52:07 82KB 网络 网络
1
为了适用于实时编码,必须对 HEVC 编码标准的关键技术和耗时模块进行研 究,然后提出提高编码速度的优化算法
2022-02-24 20:47:54 1.47MB HEVC
1
为降低预测控制在大规模系统在线实施中的计算量,同时保证系统的全局优化性能,提出一种集中优化、分散控制的双层结构预测控制策略。在稳态目标计算层,基于全局过程模型对系统进行集中优化,将优化结果作为设定值传递给动态控制层;在动态控制层,将大系统划分为若干个子系统,每个子系统分别由基于各自子过程模型的模型预测控制进行控制,为减少各子系统之间的相互干扰,在各个子系统之间添加前馈控制器对扰动进行补偿,提高系统的总体动态控制性能
2021-12-29 21:24:34 4KB 预测优化
1
使用财务数据构建一个多因子选股模型,在支持向量机分类上进行预测优化。选股上使用排序法对数据进行预处理,再使用支持向量机对股票收益进行分类预测,最后使用数据到分离超平面的距离进行排序,优化支持向量机的分类预测。实证中,从中证500成分股中选出股票组合,在2016年四季度到2018年一季度获得累计收益88.96%。择时策略的均线策略和通道突破策略均能有效降低波动率和回撤。还使用高频数据来降低均线策略的滞后性,波动率又得到进一步降低。本模型利用支持向量机性质提高预测精度,结合技术分析优化了策略的收益,为多因子选股和交易提供了新的研究视角。
2021-10-22 12:37:37 665KB 支持向量机
1
遗传算法,模拟退火,土狼,鸡群,蜂群,狼群,粒子群,以及其MATLAB源代码,亲测效果明显,其中有本人实测粒子群优化的极限学习机,效果提升很大,用于回归预测,或者分类
2021-09-03 09:54:24 10.7MB 回归预测 优化算法 粒子群 遗传算法
高速铁路路基的工后沉降严重影响着行车安全。在已有的预测模型中,所采用的初始数据往往不能满足等时间周期采集,而且还会伴随着一系列不可避免的观测误差,模型本身的误差累计,不能进行长期预测。文中利用最小二乘原理对初始值进行拟合改进,采用Lagrange插值方法将非等间隔序列转为等间隔序列,并基于新陈更替GM(1,1)模型利用MATLAB建立沉降预测模型;在此基础上,提出对模型残差进行GM改正以提高模型精度的方法。研究表明,通过对初始值序列改正后的模型具有较好的适应性,优化改进后的模型预测误差小,预测精度优于新陈更替GM(1,1)模型。
2021-06-24 22:03:15 909KB MATLAB 铁路路基 沉降预测 优化方法
回归模型是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。例如,司机的鲁莽驾驶与道路交通事故数量之间的关系,最好的研究方法就是回归。
2021-03-11 17:02:27 3KB matlab 回归预测 回归预测优化
1