(KELM+SHAP)基于核极限学习机的数据多输入单输出+SHAP可解释性分析的回归预测模型 1、在机器学习和深度学习领域,模型复杂度的不断攀升使得决策过程的可解释性成为研究热点。模型如何做出决策、判断依据的合理性以及特征依赖状况等问题,都亟需科学的分析方法来解答。在此背景下,SHAP(SHapley Additive exPlanations)凭借其坚实的理论基础和强大的解释能力应运而生。​ 2、SHAP 构建于博弈论中的 Shapley 值概念,能够为任意机器学习模型提供局部与全局的解释。其核心思想是将模型预测值分解为每个特征的贡献之和,通过计算特征加入模型时对预测结果的边际贡献,量化各特征对最终决策的影响程度。这种方法不仅能够揭示模型对单一样本的决策逻辑,还可以从整体层面分析模型对不同特征的依赖模式,识别出被过度依赖或忽略的关键特征。​ 3、相较于传统机理模型受困于各种复杂力学方程,难以平衡预测精度与可解释性的局限,采用机器学习和与 SHAP 的混合建模框架,实现了预测性能与解释能力的有机统一。该框架在保障回归模型高精度预测的同时,利用 SHAP 的特征贡献分析能力,将模型的决策过程以直观且符合数学逻辑的方式呈现,为模型优化与决策支持提供了重要依据,有望在多领域复杂系统建模中发挥关键作用。 代码解释: 1.本程序数据采用FO工艺数据库,输入特征为:涵盖膜面积、进料流速、汲取液流速、进料浓度及汲取液浓度。 2.无需更改代码替换数据集即可运行!!!数据格式为excel! 注: 1️⃣、运行环境要求MATLAB版本为2018b及其以上【没有我赠送】 2️⃣、评价指标包括:R2、MAE、MSE、RPD、RMSE等,图很多,符合您的需要 3️⃣、代码中文注释清晰,质量极高 4️⃣、赠送测试数据集,可以直接运行源程序。替换你的数据即
2025-08-12 11:26:09 24KB SHAP KELM
1
内容概要:本文详细介绍了使用Matlab实现CNN-Transformer多变量回归预测的项目实例。项目旨在应对传统回归模型难以捕捉复杂非线性关系和时序依赖的问题,通过结合CNN和Transformer模型的优势,设计了一个能够自动提取特征、捕捉长时间依赖关系的混合架构。该模型在处理多维度输入和复杂时序数据方面表现出色,适用于金融市场预测、气候变化建模、交通流量预测、智能制造和医疗健康预测等多个领域。文中还列举了项目面临的挑战,如数据预处理复杂性、高计算开销、模型调优难度等,并给出了详细的模型架构及代码示例,包括数据预处理、卷积层、Transformer层、全连接层和输出层的设计与实现。; 适合人群:对深度学习、时间序列预测感兴趣的科研人员、高校学生以及有一定编程基础的数据科学家。; 使用场景及目标:①适用于金融市场预测、气候变化建模、交通流量预测、智能制造和医疗健康预测等多领域的时间序列回归预测任务;②通过结合CNN和Transformer模型,实现自动特征提取、捕捉长时间依赖关系,增强回归性能和提高泛化能力。; 其他说明:此项目不仅提供了详细的模型架构和代码示例,还强调了项目实施过程中可能遇到的挑战及解决方案,有助于读者深入理解模型的工作原理并在实际应用中进行优化。
2025-08-11 11:29:20 36KB Transformer Matlab 多变量回归 深度学习
1
内容概要:本文介绍了如何利用Matlab编写基于LSTM(长短期记忆网络)和多头注意力机制的数据分类预测模型。该模型特别适用于处理序列数据中的长距离依赖关系,通过引入自注意力机制提高模型性能。文中提供了完整的代码框架,涵盖从数据加载到预处理、模型构建、训练直至最终评估的所有关键环节,并附有详细的中文注释,确保初学者也能轻松上手。此外,还展示了多种可视化图表,如分类效果、迭代优化、混淆矩阵以及ROC曲线等,帮助用户直观地理解和验证模型的表现。 适合人群:面向初次接触深度学习领域的研究人员和技术爱好者,尤其是那些希望通过简单易懂的方式快速掌握LSTM及其变体(如BiLSTM、GRU)和多头注意力机制的应用的人群。 使用场景及目标:① 对于想要探索时间序列数据分析的新手来说,这是一个理想的起点;② 提供了一个灵活的基础架构,允许用户根据自己的具体任务需求调整模型配置,无论是分类还是回归问题都能胜任;③ 借助提供的测试数据集,用户可以在不修改代码的情况下立即开始实验,从而加速研究进程。 其他说明:为了使代码更加通用,作者特意设计了便于替换数据集的功能,同时保持了较高的代码质量和可读性。然而,某些高级特性(如ROC曲线绘制)可能需要额外安装特定版本的Matlab或其他第三方库才能完全实现。
2025-08-08 23:22:44 1.34MB
1
内容概要:本文详细介绍了如何使用MATLAB实现一个基于贝叶斯优化的Transformer-BiGRU分类模型。首先简述了Transformer和BiGRU的基本原理及其在处理时序数据方面的优势。接着,文章深入讲解了贝叶斯优化的概念及其在参数调优中的应用。随后提供了完整的MATLAB代码框架,涵盖数据加载与预处理、模型定义、贝叶斯优化、模型训练与预测、结果可视化的各个环节。通过具体实例展示了该模型在光伏功率预测等场景中的优越表现。 适合人群:对机器学习和深度学习感兴趣的研究人员和技术爱好者,特别是有一定MATLAB基础的初学者。 使用场景及目标:适用于需要处理时序数据的任务,如光伏功率预测、负荷预测等。目标是帮助读者理解和实现一个高效的时序数据分析工具,提高预测精度。 其他说明:文中提供的代码框架简洁明了,附带详细的注释和直观的图表展示,便于快速上手。同时提醒了一些常见的注意事项,如数据归一化、环境配置等,确保代码顺利运行。
2025-08-08 23:18:42 3.17MB
1
本文详细介绍了一个使用MATLAB来实现实验性时间序列预测项目的流程,涵盖从合成数据生成到基于CNN-BiLSTM结合注意力建模的全过程。首先介绍了项目背景及其理论依据。紧接着详细展示如何构造数据以及进行特征工程。在此基础上建立并自定义了CNN-BiLSTM-Attention混合模型来完成时序预测,并对整个训练、测试阶段的操作步骤进行了细致描绘,利用多个评价指标综合考量所建立模型之有效性。同时附有完整实验脚本和详尽代码样例以便于复现研究。 适用人群:具有一定MATLAB基础的研究员或工程师。 使用场景及目标:适用于需要精准捕捉时间序列特性并在不同条件下预测未来值的各种场景。 此外提供参考资料链接及后续研究展望。
2025-08-08 20:38:06 37KB BiLSTM Attention机制 时间序列预测 MATLAB
1
储能利用MPC模型对风电与光伏功率波动的控制:平抑效果与SOC变化可视化Matlab程序,储能利用MPC模型平抑风电光伏功率波动:Matlab程序实现与结果分析,储能利用模型预测控制(MPC)平抑风电 光伏功率波动Matlab程序(只能实现平抑波动,出图包括储能充放电曲线,平抑前后功率对比,SOC状态变化) ,核心关键词:储能利用;模型预测控制(MPC);平抑风电光伏功率波动;Matlab程序;充放电曲线;功率对比;SOC状态变化。,Matlab程序:基于MPC的储能系统平抑风电光伏功率波动,展示充放电曲线与SOC变化
2025-08-07 21:47:53 1.54MB paas
1
内容概要:本文介绍了基于蜣螂优化算法(DBO)优化卷积双向长短期记忆神经网络(CNN-BiLSTM)融合注意力机制的多变量时序预测项目。该项目旨在提升多变量时序预测的准确性,通过融合CNN提取局部时空特征、BiLSTM捕捉双向长短期依赖、注意力机制动态加权关键时间点和特征,以及DBO算法智能优化模型参数,解决传统方法难以捕获长短期依赖和多变量非线性交互的问题。项目解决了多变量时序数据的高维复杂性、模型参数难以调优、长期依赖难以捕获、过拟合与泛化能力不足、训练时间长、数据噪声及异常值影响预测稳定性、复杂模型可解释性不足等挑战。模型架构包括输入层、卷积层、双向长短期记忆层(BiLSTM)、注意力机制层和输出层,参数优化由DBO负责。; 适合人群:对深度学习、时序数据分析、群体智能优化算法感兴趣的科研人员、工程师及研究生。; 使用场景及目标:①提升多变量时序预测准确性,满足实际应用对预测精度的高要求;②实现模型参数的智能优化,减少人工调参的工作量和盲目性;③解决时序数据的非线性和动态变化问题,适应真实场景中的时变特性;④推动群体智能优化算法在深度学习中的应用,探索新型优化算法与深度学习结合的可行路径。; 阅读建议:本文涉及多变量时序预测的理论背景、模型架构及其实现细节,建议读者在阅读过程中结合MATLAB代码示例进行实践,深入理解各个模块的作用及优化策略。
2025-08-05 21:53:24 31KB 深度学习 时序预测
1
内容概要:本文详细介绍了一个基于改进蜣螂算法(MSADBO)优化卷积长短期记忆神经网络(CNN-LSTM)的多特征回归预测项目。项目旨在通过优化超参数选择,提高多特征回归问题的预测精度。主要内容包括:项目背景、目标与意义、挑战及解决方案、特点与创新、应用领域、模型架构及代码示例。项目通过MSADBO算法自动优化CNN-LSTM模型的超参数,解决了传统方法效率低、易陷入局部最优解等问题。此外,项目还探讨了如何通过数据预处理、特征提取、模型架构设计等手段,提高模型的计算效率、可解释性和适应性。; 适合人群:具备一定机器学习和深度学习基础,对优化算法和时间序列预测感兴趣的科研人员及工程师。; 使用场景及目标:①提高多特征回归问题的预测精度;②优化超参数选择,减少手动调参的工作量;③改进优化算法,提升全局搜索能力;④拓展应用领域,如金融预测、气候变化预测、能源管理等;⑤提高计算效率,减少模型训练时间;⑥增强模型的可解释性和适应性,提升实际应用中的表现。; 其他说明:此项目不仅注重理论研究,还特别考虑了实际应用的需求,力求使模型在真实场景中的表现更为优异。项目代码示例详细展示了从数据预处理到模型预测的完整流程,为读者提供了实践指导。
2025-08-05 21:52:42 44KB Python 超参数优化
1
内容概要:本文介绍了一种创新的时间序列预测模型MSADBO-CNN-BiGRU,该模型结合了蜣螂优化算法(MSADBO)、卷积神经网络(CNN)和双向门控循环单元(BiGRU)。模型通过Python代码实现了数据预处理、模型构建、参数优化以及结果可视化。文中详细解释了模型的关键组件,如Bernoulli混沌初始化、改进的正弦位置更新和自适应变异扰动。此外,还提供了具体的参数优化范围和注意事项,确保模型能够高效地进行时间序列预测。 适合人群:从事时间序列预测研究的技术人员、数据科学家以及有一定机器学习基础的研究人员。 使用场景及目标:适用于需要高精度时间序列预测的任务,如电力负荷预测、金融数据分析、销售预测等。目标是通过优化模型参数,提高预测准确性,降低均方误差(MSE)和平均绝对百分比误差(MAPE)。 其他说明:模型的性能依赖于数据质量和参数设置。建议初学者先使用提供的示范数据集进行实验,熟悉模型的工作流程后再应用于实际数据。遇到预测效果不佳的情况,应首先检查数据的质量和特征工程是否到位。
2025-08-05 21:50:30 146KB
1
clock.zip 基于机器学习的卫星钟差预测方法研究HPSO-BP
2025-08-05 19:20:02 16.59MB BP
1