本文探讨的是基于干扰观测器的具有不匹配干扰的非线性系统抗干扰控制策略。干扰观测器(Disturbance Observer)是现代控制理论中用于估计系统干扰的一种有效工具,通过实时观测干扰,可以在控制过程中对干扰进行补偿,从而提高系统的性能。 干扰观测器的基本原理是利用系统输出与期望输出之间的差值来估计干扰。在实际应用中,干扰可能来自于外部环境、系统参数的不确定性、模型误差等各种因素。这些干扰可能对系统的稳定性和性能产生不利影响。特别是对于非线性系统而言,干扰的影响更为复杂,因此需要有效的控制策略来克服干扰带来的不良影响。 本文所提出的抗干扰控制方案,是针对一类具有不匹配干扰的非线性系统。所谓不匹配干扰,指的是这些干扰并不完全符合系统模型的预期结构,它们可能在系统的不同部分、不同的控制通道中出现,对系统控制输入产生干扰。这类干扰的建模和补偿比匹配干扰更具有挑战性。 为了解决这一问题,本文提出了一个基于干扰观测器的控制方案,通过结合干扰观测器技术与后推方法(back-stepping method)来设计控制器。后推方法是当前非线性控制系统设计中一个非常重要的技术,它通过逐步设计每一个子系统的控制器,最终实现整个系统的稳定控制。后推方法特别适合处理非线性系统中的控制问题,因为它可以系统地将复杂的非线性系统分解为更易于处理的低阶子系统。 本文作者在以往的研究基础上,扩展了对于具有不匹配干扰的更一般化非线性系统的控制策略。在提出的新方案中,干扰观测器用于估计和补偿不匹配干扰的影响,而后推方法用于构建整个系统的稳定控制器。这种复合控制策略不仅能够有效抵抗干扰,而且能够保证闭环系统的半全局一致最终有界(Semi-Global Uniformly Ultimate Bounded,SGUUB)稳定性。 文章还介绍了干扰观测器控制策略在20世纪80年代末出现,随后在多个控制领域得到了应用。近年来,干扰观测器控制策略与其他控制方法如H∞控制、滑模控制、自适应控制、模糊控制等相结合,形成了多种复合控制方案。然而,将干扰观测器与后推方法结合的复合控制方案的报道却很少。在本文中,作者提出了一种新的结合干扰观测器技术和后推方法的控制方案,并通过数值例子的模拟实验来验证该控制方案的可行性和有效性。 关键词包括抗干扰控制、干扰观测器、不匹配干扰。通过本论文的研究,我们可以了解到关于干扰观测器在抗干扰控制中应用的最新进展,以及如何结合后推方法解决不匹配干扰问题。这些知识对于理解和设计非线性系统的抗干扰控制方案具有重要的理论价值和实践意义。 此外,本文的工作为解决实际工程中遇到的非线性系统的干扰问题提供了新的思路和方法,特别是在那些干扰复杂且难以精确建模的场合。虽然由于OCR扫描的原因,本文内容可能存在个别字识别错误或漏识别,但通过上下文的语境和相关领域的知识,我们仍能理解文章的主要内容和贡献。
2024-11-07 11:29:49 196KB 研究论文
1
一类输出受限非线性系统的输出反馈控制
2024-07-10 14:13:22 145KB 研究论文
1
基于扩张状态观测器的迟滞非线性系统辨识.pdf,针对一类迟滞非线性系统提出一种参数辨识新方法。通过构造合适的周期输入信号,分析Bouc Wen模型的积分特性,该特性在后续线性参数与迟滞参数辨识中起到重要作用。利用扩张状态观测器获得系统状态和等效扰动构造方程组,实现线性参数和非线性参数的分离辨识,所有参数通过线性方程组求解得到。通过数值仿真验证了方法的有效性。最后,方法应用于一类压电系统的迟滞非线性模型辨识,所得模型能够很好地反应实际系统的特性。
2024-03-28 16:58:26 3.19MB 论文研究
1

基于Pseudo-Partial-Derivative(PPD)的概念动态线性化非线性系统,利用集结方法处理未来预测时刻的PPD,实现了非线性系统的自适应预测函数控制.所给算法的预测模型只与当前时刻的测量数据有关,不依赖于对象的具体结构.该算法能够提供有界的输入输出,并能无偏差跟踪给定值.最后通过大滞后对象和强非线性pH中和滴定实验验证了该方法的有效性,并说明了其具有很强的鲁棒性和抗干扰能力.

1

针对一类严格反馈不确定非线性动态系统, 提出一种直接鲁棒自适应模糊控制新方案. 利用模糊系统的逼
近能力、后推设计方法和积分型李亚普诺夫函数, 依次确定各虚拟控制及模糊系统中可调参数的自适应律, 并最终确
定出控制律. 为改善控制系统的性能, 引入逼近误差的自适应补偿项. 通过李亚普诺夫方法, 证明了闭环系统是一致
终结有界的. 仿真结果表明了该方法的有效性.

1
基于Takagi-Sugeno模糊模型的大规模非线性系统的鲁棒分散静态输出反馈控制设计
2023-03-27 16:46:19 1.37MB 研究论文
1
在本文中,我们考虑了为连续时间非线性系统开发控制器的问题,其中控制该系统的方程式未知。 利用这些测量结果,提出了两个新的在线方案,这些方案通过两个基于自适应动态编程(ADP)的新实现方案来合成控制器,而无需为系统构建或假设系统模型。 为了避免对系统的先验知识的需求,引入了预补偿器以构造增强系统。 通过自适应动态规划求解相应的Hamilton-Jacobi-Bellman(HJB)方程,该方程由最小二乘技术,神经网络逼近器和策略迭代(PI)算法组成。 我们方法的主要思想是通过最小二乘技术对状态,状态导数和输入信息进行采样以更新神经网络的权重。 更新过程是在PI框架中实现的。 本文提出了两种新的实现方案。 最后,给出了几个例子来说明我们的方案的有效性。 (C)2014 ISA。 由Elsevier Ltd.出版。保留所有权利。
2023-03-21 17:45:57 901KB Model-free controller; Optimal control;
1
针对传统模型参数辨识方法和遗传算法用于模型参数辨识时的缺点,提出了一种基于微粒群优化(PSO)算法的模型参数辨识方法,利用PSO算法强大的优化能力,通过对算法的改进,将过程模型的每个参数作为微粒群体中的一个微粒,利用微粒群体在参数空间进行高效并行的搜索来获得过程模型的最佳参数值,可有效提高参数辨识的精度和效率。
2023-03-14 16:51:01 277KB 微粒群算法
1
非线性系统的有限时间自适应模糊跟踪控制设计
2023-03-14 09:52:17 384KB 研究论文
1

针对一类未知的连续非线性系统, 提出一个基于单网络近似动态规划(ADP) 的近似最优控制方案. 该方
案通过设计一个新型的递归神经网络(RNN) 辨识器放松了系统模型需已知或部分已知的要求, 并利用一个神经网
络(NN) 近似系统的性能指标函数消除了常规ADP方法中的控制网络. 通过Lyapunov 理论分析严格证明了闭环系
统内所有信号一致最终有界, 并且所获得的性能指标函数和控制输入分别收敛到最优性能指标函数和最优控制输入
的小邻域内. 仿真结果验证了所提出控制方案的有效性.

1