本文提出一种基于核SMOTE(Synthetic Minority Over-sampling Technique)的分类方法来处理支持向量机(SVM)在非平衡数据集上的分类问题.其核心思想是首先在特征空间中采用核SMOTE方法对少数类样本进行上采样,然后通过输入空间和特征空间的距离关系寻找所合成样本在输入空间的原像,最后再采用SVM对其进行训练.实验表明,核SMOTE方法所合成的样本质量高于SMOTE算法,从而有效提高SVM在非平衡数据集上的分类效果.
2024-05-20 16:31:07 531KB 支持向量机;
1
针对传统的过采样算法在增加样本的同时可能使决策域变小和噪声点增加的问题进行了研究,提出了一种基于错分的混合采样算法。该算法是以SVM为元分类器,AdaBoost算法进行迭代,对每次错分的样本点根据其空间近邻关系,采取一种改进的混合采样策略:对噪声样本直接删除;对危险样本约除其近邻中的正类样本;对安全样本则采用SMOTE算法合成新样本并加入到新的训练集中重新训练学习。在实际数据集上进行实验,并与SMOTE-SVM和AdaBoost-SVM-OBMS算法进行比较,实验结果表明该算法能够有效地提高负类的分类准确率。
1