在自动测控系统中,常需要测量和显示有关电参量。目前大多数测量系统仍采用变压器式电压、电流互感器,由于互感器的非理想性,使得变比和相位测量都存在较大的误差,常需要采用硬件或软件的方法补偿,从而增加了系统的复杂性。采用尔检测技术,可以克服互感器这些缺点,能测量从直流到上百千赫兹的各种形状的交流信号,并且达到原副边不失真传递,同时又能实现主电路回路和电子控制电路的隔离,尔传感器的输出可直接与单片机接口。因此尔传感器已广泛应用于微机测控系统及智能仪表中,是替代互感器的新一代产品。在此提出了利用尔传感器对电参量特别是对高电压、大电流的参数的测量。   1 测量原理   1.1 尔效应原理
2025-06-13 10:24:45 196KB
1
在自动测控系统中,常需要测量和显示有关电参量。目前大多数测量系统仍采用变压器式电压、电流互感器,由于互感器的非理想性,使得变比和相位测量都存在较大的误差,常需要采用硬件或软件的方法补偿,从而增加了系统的复杂性。采用尔检测技术,可以克服互感器这些缺点,能测量从直流到上百千赫兹的各种形状的交流信号,并且达到原副边不失真传递,同时又能实现主电路回路和电子控制电路的隔离,尔传感器的输出可直接与单片机接口。因此尔传感器已广泛应用于微机测控系统及智能仪表中,是替代互感器的新一代产品。在此提出了利用尔传感器对电参量特别是对高电压、大电流的参数的测量。   1 测量原理   1.1 尔效应原理
2025-06-13 10:23:54 159KB 传感技术
1
《基于尔传感器电参量测量系统的设计》 在现代自动测控系统中,精确测量和显示电参量是至关重要的。传统的测量方法通常依赖于变压器式的电压和电流互感器,但由于互感器本身的非理想特性,如变比误差和相位偏差,导致测量结果的不准确,需要额外的硬件或软件补偿,增加了系统的复杂性。尔传感器的出现为解决这些问题提供了新的解决方案。尔传感器能够测量从直流到高频交流的各种电信号,同时保持原副边信号不失真传递,还能实现主电路与控制电路的电气隔离,因此在微机测控系统和智能仪表中得到了广泛应用,成为互感器的理想替代品。 尔效应是尔传感器工作的基础。当一个N型半导体薄片在垂直于其表面的磁场中通过电流时,由于洛伦兹力的作用,电荷会在导体两端形成一个电动势,即尔电压。尔电压与电流、磁感应强度和尔常数或乘积灵敏度有关。这使得尔传感器可以用来测量与其相关的各种电参量。 利用尔传感器测量电参量的原理是,通过控制尔传感器的电流或磁场,可以间接测量与之相关的未知量。例如,保持电流恒定时,可以通过测量尔电压来确定磁感应强度,从而测量电流或电压。反之,如果磁场恒定,通过尔电压和电流的关系可以测量电压。这使得尔传感器可以用于测量交流电的功率因数、电功率和频率。 系统的结构通常包括尔传感器、信号调理电路、多路转换开关、A/D转换器、单片机以及显示装置。被测电参量首先由尔传感器转化为电压信号,经过调理电路和多路开关处理后,通过A/D转换器送入单片机。单片机,如89C51,作为系统的主控制器,接收并处理数据,用户可以通过键盘选择测量的电参量类型,测量结果则通过数码管或液晶显示器显示。 对于电压和电流的测量,尔电流传感器采用磁平衡原理,通过反馈电路动态平衡原边和副边的磁场,确保输出电流与输入电流成比例。同样,电压测量可以通过在原边线圈中串联电阻,将电流转换为电压进行测量。此外,通过尔传感器的输出电流和适当的电阻,可以实现电压形式的输出,进一步简化测量和显示环节。 对于功率和功率因数的测量,尔传感器可以配合其他电路,如电压和电流的乘法器,计算瞬时功率,进而积分得到有功功率。频率测量则可以通过检测交流信号的周期来实现。在测量特高压交流电压时,需要先通过隔离变压器降低电压,再进行测量。 基于尔传感器的电参量测量系统以其高精度、低误差和简单的设计,为电参量的测量提供了高效可靠的方法。随着技术的发展,尔传感器的应用将进一步拓宽,为电力系统、工业自动化等领域带来更精确的测量手段。
2025-06-13 10:11:38 87KB 霍尔传感器 测量系统 课设毕设
1
在本项目中,我们主要探讨的是如何利用STM32F103微控制器的硬件抽象层(HAL)库实现一个尔传感器驱动的电机转速测量系统。STM32F103是一款广泛应用于嵌入式系统的高性能微控制器,其内含多个通用定时器,非常适合进行这种实时的信号处理。 我们要了解定时器的输入捕获功能。STM32的定时器可以设置为输入捕获模式,当外部信号(如尔传感器的脉冲)发生变化时,定时器会记录下这一时刻,即捕获事件。在这个项目中,我们将定时器配置为上升沿触发,这意味着每当尔传感器的输出信号从低到高转变时,定时器会捕获这个时间点。这种机制可以精确地测量两个脉冲之间的间隔,从而计算电机的转速。 尔传感器是检测电机磁极位置变化的关键组件。它通过检测磁场强度的变化,产生与电机转子位置相关的脉冲信号。电机的极对数会影响脉冲的频率,因为每转动一周,电机的磁极就会经过尔传感器一定次数,这个次数等于极对数的两倍。因此,通过知道电机的极对数,我们可以将捕获到的脉冲周期转换为电机的转速。 接下来,我们提到的"CubeMX"(.ioc文件)和".mxproject"文件是STM32CubeMX配置工具生成的。STM32CubeMX是一个用于初始化微控制器的图形化工具,可以快速配置时钟、外设接口、中断等,并自动生成相应的初始化代码。.ioc文件存储了所有配置的参数,而.mxproject文件则是IDE(如Keil MDK-ARM)的项目文件,方便开发者直接导入并进行编程。 在"Drivers"目录下,包含了HAL库的驱动代码,这些代码封装了对STM32硬件的底层操作,使得开发人员能更专注于应用逻辑而不是硬件细节。"Core"目录则包含微控制器的启动代码和应用程序的主要源文件,如主函数main.c。 在MDK-ARM目录中,存放了使用Keil uVision IDE的项目文件,包括源码、头文件、编译设置等。开发者可以通过这个项目文件直接在Keil环境中打开、编译和调试代码。 总结来说,本项目利用STM32F103的定时器输入捕获功能,结合尔传感器的脉冲信号,实现了对电机转速的精确测量。借助STM32CubeMX进行硬件配置,并利用HAL库简化了软件开发。通过解析捕获的脉冲间隔,结合电机的极对数,可以得出实时的转速数据。同时,项目提供了一个完整的Keil MDK-ARM开发环境,便于开发者进一步扩展和优化代码。
2025-06-11 10:17:32 23.1MB stm32
1
"DSP28335永磁同步电机控制程序案例:FOC、SVPWM与速度电流双闭环控制",永磁电机电机控制程序代码 DSP28335电机控制程序案例 永磁同步电机尔传感FOC SVPWM 速度电流双闭环 2 永磁同步正交编码ABZ FOC SVPWM 速度电流双闭环 3 永磁同步无感 FOC SVPWM 速度电流双闭环 4 永磁同步电机磁编码器FOC SVPWM 速度电流双闭环 5三相交流异步VF SVPWM调速控制 6 直流无刷电机尔传感方波速度电流双闭环PID控制 7直流无刷无传感方波速度电流双闭环PID控制 ,永磁电机; 电机控制程序; DSP28335; 尔传感FOC; SVPWM; 速度电流双闭环; 正交编码; 磁编码器; 三相交流异步VF调速控制; 直流无刷电机PID控制,"永磁电机控制案例:DSP28335双闭环FOC-SVPWM控制程序"
2025-05-13 21:23:48 357KB 数据仓库
1
【ACS758尔DEMO】是一款基于ACS758尔效应传感器的电流检测系统,用于实现0-100A的电流采样。这个项目提供了完整的硬件设计(包括原理图和PCB)以及相应的软件程序,帮助用户理解和应用这种电流感应技术。 尔效应传感器是利用尔效应来测量磁场强度的设备,它在电子工程领域有着广泛的应用,特别是在电流检测方面。尔效应是当一个导体中的电荷在磁场作用下垂直于磁场方向移动时,会在导体两侧产生横向电压的现象。 ACS758就是一款专为电流测量设计的集成尔效应传感器,它能够将通过其内部磁路的电流转换为可读的电压输出。 1. **ACS758特性**:ACS758具有高精度、宽量程的特点,适用于工业和汽车应用。它的线性度好,可以提供准确的电流测量。此外,它还具有温度补偿功能,确保在不同环境温度下保持稳定性能。 2. **电流采样原理**:在ACS758中,电流流过传感器内部的开路金属片,产生的磁场被尔元件检测。根据法拉第电磁感应定律,这个磁场会产生一个与通过传感器的电流成比例的电压。该电压可以通过外部电路读取并转化为实际电流值。 3. **原理图设计**:在项目提供的原理图中,可以看到ACS758如何与外围电路连接,包括电源、信号调理电路以及接口电路。这些电路用于稳定传感器的电压输出,并将其转换为易于处理的数字信号。 4. **PCB设计**:PCB设计是将原理图转化为实体电路的关键步骤。一个良好的PCB布局可以确保信号质量,减少噪声,并提高系统的稳定性。在这款DEMO中,PCB设计应考虑了信号布线的布局,确保电流测量的精确性和抗干扰能力。 5. **程序开发**:为了从ACS758获取数据并进行处理,需要编写相应的程序。这部分可能涉及到ADC(模拟数字转换器)的配置,以读取传感器的电压输出,然后根据已知的传感器特性曲线进行转换,得到实际的电流值。程序可能还包括实时显示、数据记录和异常报警等功能。 6. **应用范围**:ACS758尔电流采样DEMO可以用于各种需要监测电流的场合,如电机控制、电力监控、电池管理系统等。通过了解和实践这个DEMO,工程师可以更好地掌握电流测量技术,并将其应用到实际项目中。 总结来说,ACS758尔DEMO是一个实用的学习资源,涵盖了尔效应传感器在电流检测中的应用,包括硬件设计和软件编程的全过程。对于想要深入理解电流采样和传感器应用的IT专业人士而言,这是一个不可多得的参考资料。
2025-05-13 10:28:48 30.8MB 电流采样
1
标题中的"GPR-基尔夫迁移-成像-技术"指的是地质雷达(Ground-Penetrating Radar,GPR)采用基尔夫迁移算法进行数据处理和图像生成的技术。GPR是一种非破坏性的地下探测技术,通过发射高频电磁波到地表下,接收反射回波来探测地下结构。基尔夫迁移是GPR数据处理中的一种关键方法,它能改善图像的质量,减少由于地下界面的倾斜和折射引起的图像失真。 描述中提到的"二维基尔夫偏移的实现"是指在GPR数据处理过程中,运用基尔夫成像理论对二维数据进行偏移校正,以获得更准确的地下结构图像。这通常涉及到计算地下介质中电磁波的传播路径和相位,进而调整原始接收到的信号位置,使得图像中各个反射界面的位置与实际地质结构相匹配。 标签"软件/插件"暗示了这些文件可能是某个GPR数据处理软件或MATLAB插件的一部分,用于实现基尔夫迁移算法。 压缩包中的文件列表提供了可能的代码功能: 1. `progressbar.m`:通常用于创建进度条,显示代码执行的进度,让用户知道数据处理的状态。 2. `main.m`:这是主程序,可能包含了整个GPR数据处理流程,包括调用其他函数来完成基尔夫偏移等任务。 3. `Bscan_migration_v3.m`:B-scan(剖面图)迁移,可能用于将雷达数据转换为二维图像,版本号3可能表示这是该功能的第三次改进。 4. `Scan.m`:可能涉及数据扫描和收集过程,或者是对原始GPR数据的初步处理。 5. `GPR_transmission_angles_v4.m`:GPR发射角度的计算或处理,版本号4表明这是对发射角度处理的第四次迭代。 6. `find_image_resolution_slices.m`:寻找图像分辨率切片,可能用于确定最佳的图像分辨率参数,以提高图像清晰度。 7. `min3.m`, `min2.m`, `min1.m`:这些可能是辅助函数,用于找到某种最小值,比如最小化误差或寻找最佳参数。 8. `prettygraphs.m`:美化图形,可能用于生成视觉效果更好的处理结果图像。 这个压缩包包含了一个基于MATLAB的GPR数据处理工具,主要功能是应用基尔夫迁移算法对GPR数据进行二维偏移处理,生成更准确的地下结构图像。各个函数分工明确,共同完成了从数据收集、预处理、偏移计算到结果展示的全过程。
2025-05-05 20:50:08 69.02MB
1
内容概要:本文详细介绍了利用COMSOL软件进行水下吸声超材料的设计与仿真。首先探讨了传统吸声材料在低频段的局限性,引出了基于亥姆兹共振器的新型可调超材料。文中具体讲解了几何建模、材料属性设置、边界条件处理、网格划分以及求解器配置等关键技术环节,并提供了MATLAB和Java API的具体代码示例。此外,还分享了一些实用的小技巧,如参数化建模、热粘性损耗设置、频域扫描等。最后讨论了该技术的应用前景及其潜在挑战。 适合人群:从事海洋工程、声学材料研究的专业人士和技术爱好者。 使用场景及目标:适用于需要精确控制水下声波传播的研究项目,旨在提高吸声效率并拓宽有效频带。通过学习本文,读者能够掌握使用COMSOL进行复杂声学结构仿真的方法。 阅读建议:由于涉及较多专业术语和技术细节,建议读者提前熟悉COMSOL的基本操作流程及相关物理概念。同时,对于提供的代码示例,最好能在实际环境中尝试运行,以便更好地理解各个步骤的作用。
2025-04-28 08:33:25 516KB
1
内容概要:本文详细介绍了利用COMSOL软件仿真和设计水下吸声超材料的方法和技术。主要内容涵盖亥姆兹共振器的基本原理及其在水下声学隐身中的应用,包括模型建立、参数化扫描、流体-结构耦合边界设置、阻尼修正、能量损耗计算、渐变折射率层的设计以及网格划分技巧等。文中还讨论了如何通过调节腔体和颈部尺寸参数化来实现特定频段的声波吸收,并探讨了梯度超材料和主动控制电路的应用前景。 适合人群:从事水下声学研究、超材料设计及相关领域的科研人员和工程师。 使用场景及目标:适用于需要理解和掌握水下声学隐身技术的研究人员,帮助他们在COMSOL平台上高效地进行仿真实验,探索新型吸声材料的设计和优化。 其他说明:文中提供了大量实用的MATLAB和COMSOL代码片段,便于读者直接应用于自己的项目中。此外,还提到了一些常见的仿真陷阱和解决方法,有助于避免不必要的错误。
2025-04-23 11:33:44 617KB
1
### 尔开关3141资料详细解析 #### 一、概述 尔开关是一种基于尔效应原理设计的传感器,广泛应用于自动化控制、测量技术等领域。本篇文章将重点介绍型号为A3141的尔开关,这是一种高性能、高稳定性的尔效应开关,特别适用于高温环境下的应用。 #### 二、产品特性 - **工作温度范围**:该系列尔开关(包括A3141、A3142、A3143、A3144)能够在极端温度环境下稳定工作,特别是A3143和A3144,它们的工作温度范围可达-40°C至+150°C。 - **磁感应灵敏度**:这些设备具有较高的磁感应灵敏度,能够对磁场变化做出快速响应,并且在温度和电源电压变化时保持良好的稳定性。 - **电源范围**:这些尔开关支持较宽的电源电压范围,从4.5V到24V,内部集成有稳压器,可以有效确保在不同电压下都能正常工作。 - **输出特性**:采用开集极(output)输出方式,可以根据应用需求选择合适的外部电路进行驱动。 #### 三、绝对最大额定值 - **电源电压(VCC)**:最大28V。 - **反向电池电压(VRCC)**:最大-35V。 - **磁通密度(B)**:无限制。 - **输出关闭电压(VOUT)**:最大28V。 - **反向输出电压(VOUT)**:最小-0.5V。 - **连续输出电流(IOUT)**:最大25mA。 - **工作温度范围(TA)**: - Suffix ‘E–’:-40°C 至 +85°C。 - Suffix ‘L–’:-40°C 至 +150°C。 - **存储温度范围(TS)**:-65°C 至 +170°C。 #### 四、推荐替代品 针对新客户和新的应用领域,Allegro MicroSystems建议如下替代方案: - 对于A3141,推荐使用A1101; - 对于A3142,推荐使用A1102; - 对于A3143,推荐使用A1103; - 对于A3144,推荐使用A1104。 这些替代品同样具有出色的性能和稳定性,可以满足不同的应用需求。 #### 五、产品状态与购买指南 根据文档中的信息,A3141等尔开关已于2005年10月31日停止生产,不再提供样品。对于新项目的设计,建议选用上述推荐的替代型号。订购时,请务必按照完整的部件编号来订购,例如A3141ELT。 #### 六、内部结构与工作原理 每款设备都包含以下主要组件: - **电压调节器**:用于处理4.5V至24V之间的供电电压。 - **反向电池保护二极管**:防止反接电源造成的损坏。 - **二次尔电压发生器**:提高尔效应的灵敏度。 - **温度补偿电路**:确保在不同温度下尔效应的一致性。 - **小信号放大器**:放大尔效应产生的微弱信号。 - **施密特触发器**:实现磁感应强度的数字转换。 - **开集极输出**:便于与其他电路连接。 #### 七、总结 A3141是一款高性能的尔效应开关,其优秀的温度适应性和磁感应灵敏度使其成为许多工业应用的理想选择。尽管该型号已停产,但通过了解其特性与工作原理,我们可以更好地理解同类产品的设计思路和技术要点。对于新项目,可以考虑使用Allegro MicroSystems推荐的替代型号。
2025-04-21 20:06:53 284KB 霍尔开关3141
1