为了提高偏振去雾方法对大气光估计的准确度,提出一种基于大气光偏振层析的雾天图像重构方法。在偏振空间下,将大气光梯度先验信息作为约束条件,对原始雾天偏振图像进行分层,估计大气光偏振图像;然后从大气光偏振图像中解析大气光,实现对大气光的偏振层析;最后,结合所提雾天图像偏振重构模型,并在大气光图像中估计无穷远处大气光,实现对雾天图像的去雾重构。实验结果表明,所提方法提高了大气光估计的准确度,进而使重构图像更清晰、目标还原度更高,且适用于不同浓度下的雾天图像重构。
2022-11-11 22:06:06 15.06MB 图像处理 图像重构 偏振去雾 大气光梯
1
雾天图像增强算法研究.doc
2022-05-31 09:09:29 698KB 算法 文档资料
为提高雾天图像增强的对比度并保持颜色恒常性,提出了基于全变分 Retinex 及梯度域的雾天图像增强算法。首先,采用高斯—赛德尔 GS(Gauss-Seidel)迭代算法对基于 Retinex 的全变分能量泛函数进行求解,从而有效地保持颜色恒常性;其次,采用相对梯度与绝对梯度相结合的方式拉伸雾天图像较亮处的梯度, 在全变分Retinex理论下重建增强后的雾天图像,并将该增强算法应用到彩色图像;最后,加权融合基于全变分Retinex增强算法与梯度域增强算法的增强结果,使得增强结果既能提高对比度又能保持色彩恒常性。实验结果表明,本算法提高了雾天图像增强后的对比度和清晰度,具有颜色恒常性、颜色保真高等特性。
1
用于深度学习图像去雾的数据集,包含了250张清晰图像和对应的250*8张不同程度清晰图像
2021-04-01 13:27:22 135.18MB 雾天 图像 深度学习 去雾
1
雾天的大气退化图像具有对比度低、景物不清晰的特点,给交通系统及户外视觉系统的应用带来严重的影响。因此,雾天低对比度图像的清晰化研究有着重要的意义。图像的清晰化方法具体可分为图像增强和图像恢复两种,本文主要针对图像增强的方法进行研究
2019-12-21 21:08:19 2.27MB matla 雾天图像处理
1