针对脉内无意调相实现雷达辐射源个体识别时存在的分类模型性能不佳的问题,提出了一种长短时记忆加全卷积网络的雷达辐射源个体识别方法。首先给出了脉内信号相位的简化观测模型,并对观测相位序列进行去斜处理,提取无意调相的含噪估计;然后利用贝塞尔曲线拟合无意调相,降低噪声的影响,获得无意调相更为精确的描述;最后利用长短时记忆加全卷积网络提取无意调相序列的联合特征,实现雷达辐射源个体自动识别。仿真实验以及实测数据实验均验证了所提算法的可行性与有效性,实验结果表明,所提算法识别正确率高、耗时短。
1
针对雷达辐射源个体识别中特征提取困难和低信噪比下识别率低的问题,从图像角度出发提出了一种基于变分自编码器的雷达辐射源个体识别算法。基于信号时频分析,利用变分自编码器(variational auto-encoder, VAE )提取时频图像的深层特征,并采用核主成分分析(kernel principal component analysis,KPCA)获取特征中的主成分,最后将特征送入支持向量机进行分类识别。仿真结果表明:文中所提算法在识别效率和抗噪声性能等方面均优于其他传统算法。当信噪比(signal-to-noise ratio,SNR)为0 dB时针对6个辐射源进行识别,可获得93%以上的识别率。该算法特征提取简单、系统实时性高,具有较高的工程应用价值。
1