内容概要:本文档介绍了德州仪器(TI)设计的一种用于高电压工业应用(如保护继电器、通道隔离的±10V模拟输入卡以及逆变器和电机控制)的±12V隔离电压传感电路。该电路采用ISO224隔离放大器和ADS7945差分输入逐次逼近寄存器(SAR)模数转换器(ADC),能够测量±12V的单端信号并将其转换为±4V的差分输出。ISO224具有固定的增益⅓,输出共模电压为2.5V,适用于4.5V到18V的高压侧电源和4.5V到5.5V的低压侧电源。ADS7945则支持±5V的最大模拟输入范围,拥有高信噪比(SNR)84和低功耗特性。此外,还详细讨论了组件选择标准、性能参数(如瞬态ADC输入稳定性和噪声)、以及设计注意事项,包括线性操作验证、电容器选择以减少失真、误差校准方法等。 适用人群:从事高电压工业应用设计的专业工程师和技术人员,特别是那些需要理解和实施隔离电压传感解决方案的人群。 使用场景及目标:本设计方案旨在满足高精度、高性能的电压检测需求,特别是在存在电气干扰或需要电气隔离的应用环境中。它可以帮助工程师们构建更加可靠和安全的产品,确保系统能够在恶劣条件下正常运行。 其他说明:文中提供了详细的规格表、设计注释、仿真数据图表以及相关器件链接,帮助读者更好地理解和优化电路设计。同时提醒使用者注意TI提供的所有资料均按现状提供,不承担任何明示或暗示的责任保证。
1
移相全桥FSFB变换器仿真:隔离型DC-DC输出电压闭环控制测试,在plecs与matlab simulink环境下的应用研究,移相全桥FSFB变换器仿真研究:隔离型DC-DC变换器闭环控制的测试与实践,利用PLECS和MATLAB Simulink平台,移相全桥(FSFB)变器 隔离型DC-DC变器仿真 输出电压闭环控制,采用移相控制方式 测试环境为plecs、matlab simulink ~ ,移相全桥(FSFB)变换器; 隔离型DC-DC变换器仿真; 输出电压闭环控制; 移相控制方式; plecs仿真; matlab simulink测试环境。,移相全桥变换器仿真:隔离型DC-DC输出电压闭环控制测试
2025-07-10 11:05:41 3.19MB edge
1
双向全桥LLC谐振变换器与隔离型双向变换器的交流电网仿真研究:变频控制与闭环策略分析,双向全桥LLC谐振变换器与隔离型双向变换器的交流电网仿真研究:变频控制与闭环策略探讨,双向全桥LLC谐振变器并入交流电网仿真 隔离型双向变器 正向LLC,反向LC,CLLC拓扑 变频控制,闭环控制 ,双向全桥LLC谐振变换器; 交流电网仿真; 隔离型双向变换器; 正向LLC/反向LC/CLLC拓扑; 变频控制; 闭环控制,双向全桥LLC谐振变换器与交流电网并网仿真研究:正向反向拓扑与控制策略 在电力电子领域,双向全桥LLC谐振变换器作为一种新型的电力转换设备,近年来受到了广泛的关注。它具有高效率、高功率密度以及良好的电磁兼容性等优点,使其成为电力转换技术中的热门研究对象。尤其是在交流电网仿真中,其变频控制与闭环策略的研究对于提高电网的稳定性和可靠性具有重要的实际意义。 双向全桥LLC谐振变换器的核心优势在于其能够实现电能的双向流动,即不仅能将交流电转换为直流电,也能将直流电转换回交流电。这种特性使得它特别适合于需要能量双向转换的应用场景,例如在可再生能源发电、电动汽车充电以及储能系统中。 在交流电网的并网应用中,双向全桥LLC谐振变换器能够实现与电网的高效对接,这对于电网的负荷平衡、故障隔离以及系统稳定性等方面都有着积极的影响。通过合理设计变频控制算法,可以使变换器在不同的工作模式下,如电网故障、负载波动等情况下,依然保持稳定运行。 闭环控制策略是另一项关键研究内容。通过对变换器输出电压、电流以及频率等参数进行实时监控,并采用先进的控制算法进行反馈调整,可以确保双向全桥LLC谐振变换器在不同工作条件下的稳定性和效率。闭环控制策略的实施,不仅可以提高电能的质量,还可以有效延长设备的使用寿命。 在实际应用中,正向LLC、反向LC以及CLLC拓扑结构是常见的变频控制与闭环控制的实现方式。正向LLC拓扑特别适用于升压或降压场景,而反向LC和CLLC拓扑则适用于交流到直流或直流到交流的转换。这些拓扑结构的设计与优化,直接影响到变换器的性能表现。 此外,隔离型双向变换器在设计中还应考虑到隔离需求。在某些应用场景中,由于安全和性能的要求,必须在变换器的输入和输出之间提供电气隔离。隔离型变换器能够在不影响电气性能的同时,提供必要的隔离,保证系统稳定运行。 在仿真层面,通过构建精确的数学模型,并利用仿真软件进行仿真实验,可以有效地预测和分析双向全桥LLC谐振变换器的行为。仿真研究可以揭示变换器在各种工作状态下的性能表现,以及在不同控制策略下的反应特性。这为设计和优化变换器提供了重要的理论依据。 在研究的过程中,相关的论文、文档、图片等资料都是不可或缺的。例如,双向全桥谐振变换器的设计原理、性能分析、仿真模拟以及控制策略的研究等内容,都需要通过这些材料来深入探讨和理解。 双向全桥LLC谐振变换器与隔离型双向变换器在交流电网仿真中的应用研究,是一个综合性强、涉及多个技术领域的研究课题。通过对变频控制和闭环控制策略的深入分析,可以推动电力变换技术的进步,为实现智能电网和高效能源管理提供技术支持。
2025-07-07 10:22:02 603KB
1
双向LLC-CLLLC谐振变换器仿真模型研究:开环与电压闭环均变频控制的DCDC隔离型变换器,双向LLC与DCDC隔离型变换器:开环与电压闭环仿真模型及变频控制研究,双向LLC(CLLLC)谐振变器仿真模型,双向DCDC隔离型变器。 开环仿真和电压闭环仿真都有,均变频控制。 ,核心关键词:双向LLC谐振变换器;仿真模型;双向DCDC隔离型变换器;开环仿真;电压闭环仿真;均变频控制,双向CLLLC谐振变换器仿真模型:开环与电压闭环变频控制研究 在现代电力电子系统中,双向LLC-CLLLC谐振变换器作为一种隔离型直流-直流(DCDC)变换器,扮演着至关重要的角色。这种变换器能够在能量传输时保持较高的效率和功率密度,并且其设计具备良好的双向电能流动能力。为了深入理解这一变换器的工作原理和性能表现,研究者们建立了一系列仿真模型,并对这些模型进行了开环和电压闭环的均变频控制仿真研究。 开环仿真模型是基于理想状态下的变换器工作状态构建的,它不考虑系统中的反馈控制环节,主要用于初步评估变换器在不同工作条件下的基本性能。而电压闭环仿真模型则包括了反馈控制环节,使得变换器能够根据输出电压的实际情况进行调节,以达到稳定输出电压的目的。均变频控制技术是通过改变变换器的工作频率来调整其输出电压和功率,这种控制方法可以灵活应对不同的负载条件,保持变换器运行在最优效率区间。 在进行仿真模型分析时,研究者们利用现代电子仿真软件来模拟变换器的实际工作过程,从而获得包括电流、电压、功率等关键参数的动态变化数据。这些数据对于评估变换器性能、优化电路设计以及验证控制策略具有重要的指导意义。特别是在双向DCDC隔离型变换器的应用中,这种仿真研究尤为重要,因为它们通常用于需要高可靠性和高效率的场合,如电动汽车充电系统、可再生能源发电系统以及能量存储系统等。 通过对双向谐振变换器的仿真研究,可以揭示其在不同负载条件下的工作效率、动态响应特性以及热性能等关键性能指标。这为工程师提供了一个有力的工具,以预测和解决实际应用中可能出现的问题。同时,对双向谐振变换器的研究不仅仅局限于其基本功能,还包括对其结构设计的优化、控制策略的改进以及新应用场景的探索。 例如,在“技术之域动态变化中的双向隔离型变换器探索在电力”文档中,研究者探讨了变换器在电力系统中的应用和动态变化特性。而在“双向谐振变换器和双向隔离型变换器是现代电力系统中”文档中,则着重分析了变换器在现代电力系统中的重要性和作用。 双向LLC-CLLLC谐振变换器的仿真模型研究,无论是在开环还是电压闭环的均变频控制方面,都是为了更深入地了解变换器的内部工作原理和性能表现,以及如何更好地将其应用于实际电力电子系统中,提高系统效率和可靠性。这项研究具有重大的实际应用价值,对于推动电力电子技术的发展与创新具有积极的推动作用。
2025-07-03 18:19:29 1.45MB
1
双向LLC-CLLLC谐振变换器及其开环与电压闭环仿真的均变频控制研究,双向LLC-CLLLC谐振变换器与双向DCDC隔离型变换器的开环与电压闭环仿真研究,双向LLC(CLLLC)谐振变器仿真模型,双向DCDC隔离型变器。 开环仿真和电压闭环仿真都有,均变频控制。 ,核心关键词:双向LLC谐振变换器;仿真模型;双向DCDC隔离型变换器;开环仿真;电压闭环仿真;均变频控制。,双向LLC-CLLLC谐振变换器与DCDC隔离型变换器仿真研究 在电力电子领域中,变换器是一种用于转换电能形式的设备,它能够将电能从一种电压等级或电流形式转换为另一种电压等级或电流形式,以适应不同的电气设备使用要求。双向LLC-CLLLC谐振变换器作为一种新型的变换器结构,具有高效率、高功率密度以及宽范围的电压调节能力等特点。这种变换器尤其适用于需要频繁能量交换的应用场景,比如电动汽车的电池管理系统和可再生能源的功率调节系统。 在双向LLC-CLLLC谐振变换器的设计和应用过程中,仿真是一个非常重要的环节。通过仿真模型的建立,研究人员可以在不需要实际搭建物理电路的情况下,对变换器的性能进行评估和优化。开环仿真通常指的是在不考虑反馈控制的条件下,模拟变换器的工作状态,这种方式有助于初步理解变换器的基本工作特性。而电压闭环仿真则是在开环仿真基础上加入了电压反馈控制,通过控制算法来维持输出电压的稳定性,这种方式更贴近实际应用中变换器的工作环境。 均变频控制是变换器中的一种控制策略,它通过调节变换器工作频率来实现对输出电压或电流的精确控制。在双向LLC-CLLLC谐振变换器的仿真研究中,均变频控制可以用于评估变换器在不同工作频率下的性能表现,并优化控制参数以满足特定的应用需求。 此外,双向DCDC隔离型变换器是一种隔离式的双向直流电压转换器,它能够实现电气隔离的同时完成电压的升降,具有安全性和灵活性等优点。在仿真研究中,将双向LLC-CLLLC谐振变换器与双向DCDC隔离型变换器进行比较和结合使用,可以探索出更高效、更可靠的能量转换解决方案。 本研究的关键词包括:双向LLC谐振变换器、仿真模型、双向DCDC隔离型变换器、开环仿真、电压闭环仿真和均变频控制。这些关键词共同构成了本研究的核心内容,涵盖了变换器设计、性能分析、控制策略以及仿真技术等各个方面。 通过上述的仿真研究,可以在变换器的设计和优化过程中,提前发现潜在的问题,减少实际电路搭建的成本和风险,并且有助于提出新的设计改进方法和控制策略。仿真研究的重要性在于其能够为电力电子工程师提供一个相对安全的环境来进行实验和测试,这对于推动电力电子技术的发展具有重要的意义。
2025-07-03 18:15:33 1.35MB css3
1
内容概要:本文详细探讨了双有源桥DAB隔离型双向DCDC变换器的不同控制策略及其应用场景。首先介绍了DAB的基本结构和传统单移相控制方法,指出其存在的电流应力大和效率低的问题。接着深入讨论了三重移相双目标优化控制,通过增加内外移相角度来提高效率并减少电流应力。同时,利用粒子群优化算法进行实时参数调整,确保系统性能最优化。对于电压闭环控制部分,提出了改进的PID控制器,加入低通滤波器以避免振荡现象。此外,还介绍了基于状态空间方程的模型预测控制(MPC),强调了其在动态响应和效率方面的优势。最后,针对移相控制产生的谐波问题,提出了一种有效的PWM死区补偿方法。 适合人群:电力电子工程师、新能源汽车和储能系统的研发人员、对双向DCDC变换器感兴趣的科研工作者。 使用场景及目标:适用于需要高效能量转换和精确电压控制的应用场合,如电动汽车充电系统、电池管理系统等。目标是提升系统的效率、可靠性和稳定性。 阅读建议:本文涉及多种控制算法和技术细节,建议读者具备一定的电力电子基础知识,并结合具体工程案例进行理解和实践。
2025-06-22 11:37:39 575KB 电力电子 模型预测控制 PID控制 FPGA
1
三菱PLC FX3U-48MRT控制器资料大全:STM32主控芯片、多通讯接口与光耦隔离输出输入等功能介绍,三菱PLC FX3U-48MRT 源码,原理图,PCBFX3U PLC控制器资料 尺寸: 主控芯片:STM32F103VET6 电源:DC24V 功能: 1、1路RS232、1路RS485。 2、24路独立输出,PC817光耦隔离,继电器输出;24路独立输入,PC817光耦隔离,独立TTL输入。 预留端口。 3、4个指示灯:电源、模式、运行、故障 4、2路模拟量输入ADC、2路模拟量输出ADC 资料包含:原理图(AD版本)、PCB(AD版本)、BOM表,程序源码 ,核心关键词:三菱PLC; FX3U-48MRT; 源码; 原理图; PCB; STM32F103VET6; DC24V电源; RS232; RS485; 独立输出与输入; 预留端口; 指示灯; 模拟量输入/输出ADC; 尺寸; BOM表。,三菱PLC FX3U-48MRT PLC控制器解析与程序源码完整版:原理、硬件及BOM全览
2025-06-09 11:03:22 2.31MB 哈希算法
1
内容概要:本文深入探讨了非隔离双向DC-DC Buck-Boost变换器的工作原理及其在Matlab/Simulink环境下的仿真建模方法。文中详细描述了变换器的主电路和控制电路设计,特别是采用了电压外环电流内环的双闭环控制方式来确保系统在不同工作状态下的稳定性。具体来说,在正向运行时,直流电压源可以为蓄电池提供恒流恒压充电;而在反向运行时,蓄电池能放电以维持直流侧电压稳定。通过一系列仿真实验,验证了所提模型的有效性和可靠性。 适合人群:对电力电子系统有兴趣的研究人员和技术爱好者,尤其是那些希望深入了解非隔离双向DC-DC变换器以及掌握Matlab/Simulink仿真技能的人士。 使用场景及目标:适用于需要评估或改进非隔离双向DC-DC变换器性能的研究项目;也可用于教学环境中帮助学生更好地理解相关理论知识并培养实际操作能力。 其他说明:文中提供的仿真模型不仅有助于理解变换器的基本运作机制,还为进一步探索其性能优化和控制策略奠定了坚实的基础。
2025-06-02 22:12:48 344KB
1
4.2 隔离电阻的阻值计算 确定隔离电阻的阻值是功率分配器设计中的非常关键的一步。合适的隔离电阻阻 值能使功率分配器的输出端口间达到最优的隔离度。现在为了计算隔离电阻的阻值, 需要借助奇模激励的分析方法。为求解N节为 Wilkinson 功分器的隔离电阻,在输出端 口 2 和端口 3 处分别加上等幅反相的激励电压源,记为V0和− V0。把电路从中间平面 一分为二并取上半平面的电路来分析,中心线处为零电平,对于奇模激励而言相当于 中心线处是到地短路的。图 4-3 为 n 节等分 Wilkinson 功分器电路奇模激励的等效电路。 端口1 端口2(3) 0 1y  1 y 1n y n y 1 2g 2 2g2 n g 图 4-3 N 节宽带 Wilkinson 功分器奇模等效电路图 万方数据
2025-05-25 16:26:19 3.98MB
1
内幕威胁隔离森林 使用隔离林进行内部威胁检测 输入数据是CERT版本4.2中的login.csv文件: ://resources.sei.cmu.edu/library/asset-view.cfm?assetid=508099在数据目录中找到输入数据。 Jupyter Notebook文件用于运行和评估算法。 Python和Bash脚本用于预处理输入数据。
2025-05-23 18:17:00 44.92MB Python
1