内容概要:本文介绍了如何利用Sentinel-2遥感影像和Google Earth Engine(GEE)平台,结合多种光谱指数与随机森林(Random Forest, RF)机器学习模型,检测沿海和半咸水湖泊中的有害藻华(HABs)。通过计算MNDWI、NDCI、AFAI、MCI和ABDI等光谱指数,构建水体与藻华特征,并基于NDCI阈值生成训练标签,采用分层采样方法提取样本并划分训练集与测试集。使用100棵决策树的随机森林分类器进行模型训练与验证,评估指标包括总体精度、Kappa系数、生产者/消费者精度及F1分数。最终生成藻华危险分布图,并统计有害藻华占水体总面积的百分比,结果可导出至Google Drive。; 适合人群:具备遥感基础知识和GEE平台操作经验的科研人员或环境监测相关领域的技术人员,熟悉Python编程及基本机器学习概念的学习者; 使用场景及目标:①实现对有害藻华的自动化遥感监测;②掌握光谱指数构建、样本采集、模型训练与精度评估的完整流程;③应用于湖泊、河口等水域生态环境管理与预警系统; 阅读建议:建议结合代码实践,理解每一步的数据处理逻辑,重点关注指数选择依据、标签生成方式及模型性能分析,注意调整参数以适应不同区域的水体特征。
2025-12-25 17:59:06 10KB 遥感图像处理 随机森林分类 Google
1
asp.net后台调用javascript函数、已有变量。
javascript调用后台(.cs文件)的函数、变量。
2025-12-25 10:11:06 31KB Asp.net 随机生成图像
1
Unity答题系统(单选+随机出题+错题回顾)
2025-12-23 10:30:16 38.17MB Unity
1
Liberate MX for SRAM RaK教程 嵌入式静态随机存取存储器(SRAM)实例需要在自由(.lib)文件中捕获的定时、功率、引脚电容和噪声信息,以用于全芯片静态定时分析(STA)流。 随着嵌入式SRAM占用越来越大的芯片面积,准确、高效地生成.lib文件变得非常重要。 这些内存实例的大小和复杂性会使手动方法变得困难和容易出错。 解放MX的架构是为了描述嵌入式内存,如SRAM、ROM、CAM等,以实现定时、功率和噪声。 这是通过在完整的网络列表上运行一个像SpectreXPS这样的FastSPICE模拟器来识别电路活动。 然后,该工具自动为每个需要使用晶体管级遍历的特征的弧划分网络列表,拓扑独立的反馈分析锁存和触发点识别,自动探测,和时钟树识别和传播。 每个弧的分区网表,它包含的晶体管比完整的网表和相关的寄生网络更少,然后可以描述所有的旋转和负载与一个真正的香料模拟器,如幽灵APS。 在自动分区过程中使用动态模拟信息使其成为一种比其他方法更快地准确描述大型宏的首选方法。 基于仿真的方法还可以实现功率表征。 在功率表征期间,设计没有进行分区,因为它需要在整个实例上运行模拟。
2025-12-18 16:51:02 130KB
1
《使用Matlab生成韦伯分布数据并导入COMSOL中的详细脚本及解析》—— 弹性模量二维随机分布的模拟与实现,COMSOL中Weibull韦布分布的Matlab脚本生成与导入:附注释,学习二维弹性模量随机分布图解析,comsol weibull 韦伯分布 matlab生成导入comsol中 。 有具体脚本且标有注释,方便大家更好理解学习。 图为二维弹性模量随机分布。 ,comsol; weibull; 韦伯分布; matlab; 脚本; 注释; 二维弹性模量随机分布,**使用Comsol Weibull韦布分布及Matlab生成脚本的教程**
2025-12-18 09:03:01 1.56MB scss
1
内容概要:本文介绍了一种基于SOE(开关操作进化)算法的多时段随机配电网重构方法,旨在通过优化配电网的网络拓扑结构,降低网损并提高经济效益。该方法特别考虑了光伏和负荷的随机性,构建了多时段随机配电网重构模型。通过MATLAB结合CPLEX/Gurobi平台进行仿真分析,展示了该方法在处理大型网络时的高效性和准确性。文中详细介绍了SOE算法的工作原理及其在配电网重构中的应用,并通过IEEE标准算例验证了该方法的有效性。 适合人群:从事电力系统研究和技术开发的专业人士,尤其是对配电网优化感兴趣的科研人员和工程师。 使用场景及目标:适用于需要优化配电网运行效率的实际工程场景,如城市电网规划、分布式能源接入等。目标是通过科学合理的网络重构,减少电能损耗,提高供电可靠性和经济收益。 其他说明:该方法不仅在理论上有所创新,在实践中也有较高的应用价值。未来的研究将进一步探索智能化和自动化的配电网重构技术,以应对日益复杂的电力系统需求。
2025-12-11 16:45:27 926KB
1
利用Lyapunov理论研究了鲁棒H∞滤波问题。对所有的时变不确定性,设计了一个稳定的滤波器使滤波误差满足指定的H∞性能。为了简化问题的推导过程,引入了辅助系统,并给出了滤波器存在的充分且必要条件。通过矩阵变换得到了设计滤波器的LMI方法,利用LMI工具箱可以方便地得到滤波器的表达形式。最后,数值算例说明了所设计方法的有效性和可行性。
2025-12-04 11:58:49 2.96MB 自然科学 论文
1
利用COMSOL与MATLAB接口代码实现随机分布小圆柱体模型的方法。该模型支持两种模式:固定数量模式和固定孔隙率模式。通过调整关键参数如半径均值、标准差、高度均值和标准差,可以生成符合特定条件的小圆柱体阵列。文中还提供了详细的代码片段,解释了核心参数设置、坐标生成逻辑、碰撞检测机制以及COMSOL中几何创建的具体步骤。此外,针对可能的生成失败情况,给出了相应的解决方案和优化建议。 适合人群:对COMSOL和MATLAB有一定了解并希望深入研究两者结合进行复杂几何建模的研究人员和技术人员。 使用场景及目标:适用于需要构建随机分布小圆柱体模型的科研项目,特别是涉及超材料、多孔介质等领域。通过灵活调整参数,可以在不同应用场景下快速生成满足特定需求的模型。 其他说明:文中提供的代码不仅展示了如何实现随机分布小圆柱体的生成,还强调了在实际应用中的注意事项和优化技巧,有助于提高模型的准确性和实用性。
2025-12-04 10:53:33 505KB
1
内容概要:本文介绍了基于快速探索随机树(RRT)算法的自动驾驶汽车路径规划方法,重点解决在存在静态障碍物环境下实现有效避障与路径搜索的问题。该方法通过在Matlab环境中构建仿真模型,利用RRT算法的随机采样特性扩展搜索树,逐步探索可行路径,最终生成从起点到目标点的安全、连通路径。文中提供了完整的Matlab代码实现,便于读者复现和调试算法,同时展示了算法在复杂地图中的路径规划效果,突出了其在非完整约束系统中的适用性。; 适合人群:具备一定Matlab编程基础,从事自动驾驶、机器人或智能交通系统相关研究的科研人员及高校研究生。; 使用场景及目标:①学习RRT算法的基本原理及其在路径规划中的具体实现;②掌握在静态障碍物环境中进行路径搜索与避障的技术方法;③通过Matlab仿真验证算法性能,为进一步改进如RRT*等优化算法奠定基础; 阅读建议:建议结合Matlab代码逐行理解算法流程,重点关注随机采样、最近节点查找、路径扩展与碰撞检测等核心模块的实现,配合仿真结果分析算法优缺点,并尝试调整参数或引入优化策略以提升路径质量。
2025-11-23 20:04:24 15KB 路径规划 RRT算法 自动驾驶 Matlab仿真
1
内容概要:本文详细介绍了一个基于MATLAB实现的KPCA-RF混合模型项目,用于股票价格预测。项目通过核主成分分析(KPCA)对高维、非线性金融数据进行降维与特征提取,再结合随机森林(RF)回归模型进行价格预测,有效提升了模型的泛化能力与预测精度。整个项目涵盖数据采集、预处理、时序特征构建、KPCA降维、RF建模、结果评估与可视化等完整流程,并强调自动化、可复用性和模型可解释性。文中还列举了项目面临的挑战,如高维非线性数据处理、噪声干扰、时序建模等,并给出了相应的技术解决方案。 适合人群:具备一定金融知识和MATLAB编程基础的数据科学从业者、金融工程研究人员及高校研究生。 使用场景及目标:①应用于股票价格趋势预测与量化交易策略开发;②为金融领域中的高维非线性数据建模提供系统性解决方案;③支持模型可解释性需求下的智能投顾与风险管理系统构建。 阅读建议:建议读者结合MATLAB代码实践操作,重点关注KPCA参数选择、RF调优方法及特征重要性分析部分,深入理解模型在金融时序数据中的应用逻辑与优化路径。
2025-11-19 15:23:59 27KB KPCA 随机森林 股票价格预测 MATLAB
1