基于研究卡尔曼滤波算法在锂电池荷电状态估计和监测中应用效果的目的,本文通过建立Thevenin电池模型,结合锂电池恒定电流充放电实验数据,有效模拟出电池实际工作特性,并分别采用传统卡尔曼滤波(KF)和扩展卡尔曼滤波(EKF)算法对锂电池荷电状态(SOC)进行估测。得出如下结论:采用基于Thevenin电池模型的KF与EKF算法均可以快速精准地估测锂电池荷电状态。EKF对于初值的敏感度相较KF明显低,当初值为80%时参数适应性较好。此外,在利用卡尔曼滤波算法对电池端电压估测时发现其收敛值总会与真实值产生一个约为0.05 V的恒定偏差值。
1
基于无迹卡尔曼滤波(UKF)的锂电池荷电状态(SOC)估计,里面包含自己所做实验得到的锂电池系统参数(二阶RC等效电路模型各参数),并且通过UDDS工况仿真验证UKF算法的精度。需要各种误差图,可自行修改代码。
1
行业分类-物理装置-一种无电流传感器的锂电池荷电状态估计方法.zip