随着大数据时代的到来,基于网络数据的应用研究已成为热点。以品牌汽车销量预测为目标,将传统相关性分析与基于LASSO的特征选择方法相结合,选取相关品牌的网络搜索数据关键特征,而后建立了LASSO线性回归、支持向量回归和随机森林三种机器学习预测模型,并与传统ARIMA模型进行比较分析。实验结果表明,随机森林模型的预测平均误差为6.4%,比ARIMA模型降低了12.2个百分点,预测结果可为汽车企业生产规划和制定营销方案提供有效的决策支持。
2023-04-29 15:35:48 226KB 网络搜索数据
1
时间序列ARIMA模型的销量预测
2023-04-12 20:19:19 6KB 预测模型 Python
1
Excel模板商品销量预测.zip
2023-02-20 10:10:24 13KB
1
python基于ARIMA时间序列的销量预测模型全部数据.zipARIMA模型提供了基于时间序列理论,对数据进行平稳化处理(AR和MA过程)、模型定阶(自动差分过程)、参数估计,建立模型,并对模型进行检验。 在Python中statsmodel提供了全套的解决方案,包括窗口选择、自动定阶和平稳性检测等等算法。 预测策略 每月分上中下旬三个点预测,每月预测三次当月销量。这么做的好处是,月上旬和中旬的实际销量可以作为先验知识,提高模型预测的准确率。 依赖包 pip install -r requirements.txt 程序执行 python sales.py python基于ARIMA时间序列的销量预测模型全部数据.zipARIMA模型提供了基于时间序列理论,对数据进行平稳化处理(AR和MA过程)、模型定阶(自动差分过程)、参数估计,建立模型,并对模型进行检验。 在Python中statsmodel提供了全套的解决方案,包括窗口选择、自动定阶和平稳性检测等等算法。 预测策略 每月分上中下旬三个点预测,每月预测三次当月销量。这么做的好处是,月上旬和中旬的实际销量可以作为先验知识
人工智能-基于BP神经网络的我国汽车销量预测分析.pdf
2022-06-24 16:05:52 2.39MB 人工智能-基于BP神经网络的我国
加油站成品油销量预测算法与样本数据设计.doc
2022-05-30 09:07:58 755KB 文档资料 算法
在电商产业链中,为提升用户物流服务体验,供应链协同将货品提前准备在全球各个市场的本地仓,可有效降低物流时间,极大提升用户体验。不同于国内电商物流情况,出海电商的产品生产和销售地区是全球化的,商品的采购,运输,海关质检等,整个商品准备链路需要更长的时间。在大数据和人工智能技术快速发展的新时代背景下,运用大数据分析和算法技术,精准预测远期的商品销售,为供应链提供数据基础。 供应链需求预测,对原问题做建模问题简化。考虑商品在制造,国际航运,海关清关,商品入仓的供应链过程,实际的产品准备时长不同。这里将问题简化,统一在45天内完成。该资源为利用最近1年多的商品数据预测45天后5周每周(week1~week5)的一个不同SKU的销量模型。 该资源为大数据或者机器学习领域中一个完整的时间序列的预测案例,感兴趣的朋友可尝试下载学习,对于在供应链、电商领域的做算法研究的朋友有比较大的帮助
ctrip 携程出行产品销量预测比赛(第十名) 技术解决方案及代码
2021-12-03 17:07:12 32.67MB 销量预测 携程 时间序列 预测
1
销量预测一直是一个热点研究的课题,对于各个企业有着重要的意义.近年来,随着深度学习的崛起,用于销量预测的模型越来越多,而单一模型的预测性能往往不够理想,所以出现了越来越多的组合模型.本文利用Stacking策略将XGBoost、支持向量回归(Support Vector Regression,SVR)、GRU神经网络作为基础模型,然后将LightGBM作为最终的预测模型,并且融合了新的特征.集中了几种模型的优势,大大提高了模型的预测性能,更加接近真实的销量数据,为回归预测提供一种新的预测方法.
1
电子商务是伴随互联网技术快速兴起的一种规模大、潜力大的新型商业模式, 对产品进行短期销量预测能够帮助电商企业对市场变化采取更加迅速的反应和措施. 本文通过电商销量历史数据和门户商品链接点击量建立了一种应用于电子商务会计系统的短期销量预测模型. 借助AdaBoost思想集合多个传统的BP神经网络的预测结果, 使其具备更高的预测准确率, 根据电商短期销量变化的特点规划时间窗口的时序设计, 建立考虑周末效应的以日为单位的销量预测模型. 实验证明, 该预测模型的预测误差可以控制在20%以内.
2021-11-19 16:43:21 1.06MB AdaBoost BP神经网络 电子商务 销量预测
1