内容概要:本文详细介绍了如何使用MATLAB实现GARCH-Copula-CoVaR模型,用于金融风险管理。首先进行数据预处理,确保收益率序列平稳。接着构建GARCH(1,1)模型处理波动率,选择合适的分布(如t分布)以提高模型准确性。然后利用Copula模型(如t-Copula)捕捉不同资产之间的相依关系。最后通过蒙特卡洛模拟计算CoVaR,评估系统性风险。文中强调了模型对边缘分布和Copula类型的敏感性,并提供了多个实战经验和调试技巧。
适合人群:金融工程专业人员、量化分析师、风险管理师以及对金融时间序列建模感兴趣的科研工作者。
使用场景及目标:适用于金融机构进行风险管理和压力测试,特别是在评估系统性风险和极端市场条件下资产间的相互影响。目标是帮助用户理解和掌握GARCH-Copula-CoVaR模型的具体实现及其应用场景。
其他说明:作者分享了许多实际操作中的注意事项和技术细节,如数据清洗、模型选择、参数估计等方面的经验教训,有助于读者更好地理解和应用该模型。同时,附带了一些实用的MATLAB代码片段,便于读者快速上手实践。
2025-08-03 00:00:19
890KB
1