内容:常用高光谱分类数据集,包括常用的Indian pines\KSC\Purdue\DC\HOUSTON\Botswana\Salinas等,基本上写论文是够用的公开数据集; 使用方法:格式全部为mat格式,可以在Python和Matlab上使用; 使用建议:建议使用不同传感器的数据集来验证自己分类方法的有效性。
2023-02-09 03:26:12 980.35MB 遥感 高光谱数据集
1
为了实现对高光谱图像的分类, 提出了一种基于多特征和改进稀疏表示的方法——MFISR。从高光谱图像中提取光谱特征、Gabor特征和局部二值模式(LBP)特征, 求解稀疏系数, 同时增加一个2范式约束, 利用所得系数得到每个测试像素的最终类别标签。实验结果表明:所提MFISR方法对小样本的检测效果显著, 分类性能稳定且较优。
2022-04-24 21:52:46 10.68MB 遥感 高光谱图 稀疏表示 特征提取
1
高光谱图像分类问题是高光谱遥感图像处理问题中的研究基础,它的主要目的是根据高光谱遥感图像中的光谱信息和空间信息将图像中的每个像元划分为不同的地物类别[1]。高光谱图像分类技术被广泛应用于环境监测、矿产勘探、军事目标识别等领域,然而高光谱图像的高维特性、波段间的高度相关性、光谱混合等使得高光谱图像分类面临着巨大的挑战。因此,高光谱图像分类问题越来越受到学者们的广泛关注[2-4]。
2022-04-07 21:27:40 11.87MB 遥感 高光谱图 分类 空谱联合
1
为了解决基于深度学习的高光谱图像分类方法对于小样本数据分类精度低的问题,提出了一种基于多尺度残差网络的分类模型。该模型通过在残差模块中加入分支结构,分别构造了基于光谱特征和空间特征的提取模块,实现了空间特征和光谱特征的多尺度提取融合,充分利用了高光谱图像中丰富的空谱信息。此外,所提模型使用了动态学习率、批归一化以及Dropout等来提高计算效率和防止过拟合。实验结果表明,该模型在Indian Pines和Pavia University数据集上分别取得了99.07%和99.96%的总体分类精度,与支持向量机和现有的深度学习方法相比,所提模型有效地提高了针对小样本高光谱图像的分类性能。
2022-03-28 16:27:30 9.05MB 遥感 高光谱图 小样本 多尺度
1
高光谱波段合并程序
2021-12-30 09:08:13 6KB 遥感 高光谱 波段 合并
1
高光谱波段提取程序
2021-12-30 09:08:13 125KB 遥感 高光谱 提取 程序
1
高光谱遥感成像机理与成像光谱仪 中国科学院资料
2021-11-24 14:54:15 762KB 高光谱遥感 成像光谱仪
1
在进行遥感图像多分类识别时, 针对使用传统方法遇到的分类模型特征提取困难、分类精度不理想、分类种类少等问题, 研究了卷积神经网络(CNN)模型在高光谱遥感地物多分类识别中的可行性及不同CNN 模型对高光谱遥感地物多分类的识别效果。从ISPRS(International Society for Photogrammetry and Remote Sensing)提供的Vaihingen及Google Earth中采集数据,制作了包含6类地物的数据集一。在此基础上增加10类地物制作数据集二, 再增14类地物制作数据集三。在预处理图像数据之后, 通过设置神经网络结构、调整模型参数、对比神经网络模型等, 上述3类数据集的地物分类识别率均达到95%以上。通过分析不同CNN模型对高光谱遥感地物多分类识别效果的影响, 证实了CNN模型在高光谱遥感地物多分类识别应用的可行性且具有较高的识别率。实验结果为CNN模型在高光谱遥感地物多分类识别中的应用提供了一定的参考。
2021-10-29 19:43:27 6.62MB 遥感 高光谱图 图像分类 卷积神经
1
受空洞卷积在图像信息方面保持优秀性能的启发,为进一步提高分类精度,提出一种基于双通道空洞卷积神经网络(DCD-CNN)的高光谱图像分类框架。空洞卷积可扩展滤波器的感受野,有效地避免图像信息丢失,从而提高分类精度。在该框架中,分别采用含有空洞卷积的一维卷积神经网络(1D-CNN)和二维卷积神经网络(2D-CNN)提取高光谱图像的光谱特征和空间特征。再采用加权融合方法对提取的空间特征和光谱特征进行融合。最后将融合后的特征输入支持向量机进行最终分类。对两个常用的高光谱图像数据集进行实验并与现有的4种分类方法进行比较,结果表明,所提框架具有更好的分类性能。
2021-09-22 14:50:28 1.87MB 遥感 高光谱图 深度学习 空洞卷积
1
遥感图像处理论文合集,包含高光谱遥感多个方向,适合遥感入门
2021-09-06 13:04:30 104.62MB 遥感 高光谱遥感 遥感图像处理