在遥感领域,数据集是研究和开发的关键资源,它们为模型训练、验证和测试提供了必要的数据。"高光谱和LiDAR多模态遥感图像分类数据集"是这样一种专门针对遥感图像处理的宝贵资源,它结合了两种不同类型的数据——高光谱图像和LiDAR(Light Detection and Ranging)数据,以实现更精确的图像分类。 高光谱图像,也称为光谱成像,是一种捕捉和记录物体反射或发射的光谱信息的技术。这种技术能够提供数百个连续的光谱波段,每个波段对应一个窄的电磁谱段。通过分析这些波段,我们可以获取物体的详细化学和物理特性,例如植被健康、土壤类型、水体污染等,这对环境监测、城市规划、农业管理等有着重要的应用。 LiDAR则是一种主动遥感技术,它通过向地面发射激光脉冲并测量回波时间来计算目标的距离。LiDAR数据可以生成高精度的地形模型,包括地表特征如建筑物、树木和地形起伏。此外,LiDAR还能穿透植被,揭示地表覆盖下的特征,如地基和地下结构。 这个数据集包含了三个不同的地区:Houston2013、Trento和MUUFL。每个地区可能对应不同的地理环境和应用场景,这为研究者提供了多样性的数据,以便他们在不同条件和场景下测试和比较分类算法的效果。 数据集的分类任务通常涉及识别图像中的各种地物类别,如建筑、水体、植被、道路等。多模态数据结合可以显著提升分类的准确性,因为高光谱数据提供了丰富的光谱信息,而LiDAR数据则提供了高度精确的空间信息。将这两者结合起来,可以形成一个强大的特征空间,帮助区分相似的地物类别,减少分类错误。 在实际应用中,这个数据集可以用于训练深度学习或机器学习模型,比如卷积神经网络(CNN)。通过在这样的多模态数据上训练,模型能够学习到如何综合解析光谱和空间信息,从而提高对遥感图像的分类能力。对于研究人员和开发者来说,这个数据集提供了理想的平台,用于开发新的图像分析技术,改进现有算法,并推动遥感图像处理领域的创新。 "高光谱和LiDAR多模态遥感图像分类数据集"是一个涵盖了多种地理环境和两种互补遥感技术的宝贵资源,对于理解地物特性、提升遥感图像分类精度以及推动遥感技术的发展具有重大价值。通过深入研究和利用这个数据集,我们可以期待在未来实现更加智能化和精确化的地球表面监测。
2024-10-09 21:43:16 185.02MB 数据集
1
Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-06-30 13:03:46 8.34MB matlab
1
RSSCN7 Dataset 包含 2800 幅遥感图像,从谷歌地球收集的图像,这些图像来自于 7 个典型的场景类别 —— 草地、森林、农田、停车场、住宅区、工业区和河湖,其中每个类别包含 400 张图像,分别基于 4 个不同的尺度进行采样,1:700,1:1300,1:2600,1:5200,四个尺度各100张。该数据集中每张图像的像素大小为 400*400,场景图像的多样性导致其具有较大的挑战性,这些图像来源于不同季节和天气变化,并以不同的比例进行采样。
2023-07-11 10:30:11 348MB 数据集 遥感图像 分类
1
很有用的遥感图像分类 介绍的很详细 包含监督分类和非监督分类方法
2023-02-25 20:46:11 354KB 监督分类 非监督分类 遥感图像分类
1
实现Landsat遥感图像tif格式文件的分类
2023-01-07 13:41:44 7.76MB lansat遥感图像分类 遥感图像tif 遥感
1
针对传统分类方法在处理空间特征分布极为复杂的数据时效果不佳的缺点,结合分层思想的树分类技术,对广泛用于数据挖掘模型中的CART决策树算法进行改进,提出了一种基于人机交互的决策树算法,将其应用到遥感图像自动分类中,具有很好的弹性和鲁棒性,且分类结构简单明了,达到了更好的分类效果。以VC 6.0作为开发工具,定义了一种特殊的数据结构,实现了该分类系统。实践表明,该系统具有很好的稳定性和交互性,实用性较强。
2022-12-02 09:06:49 1004KB 决策树 算法 图像分类 遥感 VC
1
基于半监督学习的遥感图像分类研究_徐庆伶.pdf ,pdf,论文
2022-11-21 18:34:22 102.52MB 遥感图像分类
1
一个可用的神经网络方法进行的 遥感图像分类,里面有数据,可以直接执行。 一个可用的神经网络方法进行的 遥感图像分类,里面有数据,可以直接执行。
2022-06-08 21:46:56 1.36MB matlab bpnn 神经网络 遥感图像分类
1
遥感图像分类的应用在遥感图像研究中具有重要意义。为了提高高光谱遥感图像分类精度,本文提出了基于多特征融合的高光谱遥感分类方法。该方法将图像的空间特征和光谱特征归一融合,然后使用AdaBoost分类器集成算法对特征进行分类。首先,该方法使用主成分分析对高光谱数据降维,并提取图像的纹理特征和直方图特征,然后将三种特征归一化;最后使用AdaBoost集成分类方法对高光谱遥感数据分类。实验结果表明,相比于单个特征分类,该方法可取得较高的分类精度。
1
一个可用的神经网络方法进行的 遥感图像分类,里面有数据,可以直接执行。 一个可用的神经网络方法进行的 遥感图像分类,里面有数据,可以直接执行。
2022-05-01 20:41:40 1.36MB matlab bpnn 神经网络 遥感图像分类
1