在本研究中,提出了一个基于长短期记忆网络(LSTM)和Transformer模型融合的新型通信噪音时序预测模型。该模型的提出主要是为了解决通信系统中噪音预测的难题,通过将两种深度学习架构的优势进行整合,旨在提升噪音时序数据的预测准确度。 LSTM网络以其在处理时序数据方面的出色性能而广受欢迎。LSTM能够捕捉序列数据中的长期依赖关系,这对于噪音预测来说至关重要,因为通信信号的噪音往往具有复杂且连续的时间特性。LSTM通过其特有的门控机制(输入门、遗忘门和输出门)有效地解决了传统循环神经网络(RNN)在长序列学习上的梯度消失和梯度爆炸问题,进而能够更加精确地建模和预测噪音变化。 而Transformer模型则代表了另一种处理序列数据的先进技术。它首次由Vaswani等人提出,完全摒弃了传统的递归结构,转而采用自注意力(self-attention)机制来处理序列数据。这种机制使得模型可以并行处理序列中的任意两个位置,极大提升了计算效率,并且增强了对序列中全局依赖关系的捕捉能力。Transformer的这种处理方式,为噪音时序数据的特征提取提供了新的可能性,尤其是对于那些需要理解全局上下文信息的复杂噪声场景。 研究将LSTM的时序依赖捕捉能力和Transformer的全局特征提取能力进行了有效的融合。在这种融合架构下,模型不仅能够保持对序列长期依赖的学习,还能够并行地处理和提取序列中的全局特征,从而提高了噪音预测模型的鲁棒性和准确性。在进行多模型性能评估时,该融合模型展现出优异的性能,明显优于单独使用LSTM或Transformer模型的预测结果。 此外,研究还涉及了多模型性能评估,对融合模型和其他主流的深度学习模型进行了比较分析。通过一系列实验验证了融合模型在各种评估指标上的优越性,如均方误差(MSE)、平均绝对误差(MAE)和决定系数(R^2)等。这些评估结果进一步证实了模型融合策略的有效性,为通信系统中的噪音预测问题提供了一个可靠的技术方案。 在通信信号处理领域,噪音是一个长期存在的挑战,它会严重影响信号的传输质量和通信的可靠性。准确预测通信信号中的噪音变化对于提前采取措施减轻干扰具有重要意义。本研究提出的基于LSTM与Transformer融合架构的通信噪音时序预测模型,在这一领域展示了巨大的潜力和应用价值。 本研究工作不仅在技术上实现了LSTM和Transformer的深度融合,而且在实际应用中展示了通过融合模型优化提升通信系统性能的可能。这项研究工作为通信噪音预测问题提供了一个新颖的解决方案,并且对于其他需要处理复杂时序数据预测任务的领域也具有重要的参考价值。
2025-11-04 18:56:10 64KB
1
在2019年的推免面试过程中,我经历了多所院校的面试。这些院校包括北京理工大学雷达技术研究所,电子科技大学的泛在无线网络实验室、多维信息感知实验室以及图像处理研究所,还有东南大学的移动通信国家重点实验室。在面试中,老师们提出了许多专业问题。面试结束后,我通过查阅相关书籍,对这些问题进行了梳理,并给出了自己的解答。这些解答仅供大家参考。 在2019年的推免面试过程中,北京理工大学、电子科技大学以及东南大学三所高校的通信与信号专业领域均为众多学子所向往的深造之地。这些院校不仅在科研实力上各有侧重,还在面试环节提出了具有针对性的专业问题,旨在考察学生的专业知识水平和解决实际问题的能力。北京理工大学的雷达技术研究所,专注于雷达技术的发展与应用,问题可能涉及信号处理、电磁波理论等方向;电子科技大学的泛在无线网络实验室以及多维信息感知实验室,则可能更注重无线通信、网络协议、信号与系统等知识;图像处理研究所则侧重于图像信号的分析与处理。东南大学的移动通信国家重点实验室,作为通信领域的领军团队,其问题可能包括移动通信技术、通信系统设计、无线网络优化等议题。 面试结束后,该学生没有满足于仅仅接受面试的考验,而是通过查阅相关书籍,进一步深化了对提问的理解,并整理出自己对于这些问题的答案。这种方式不仅能够帮助自己更好地巩固专业知识,还能够为后来者提供参考,尤其是在面临相似问题时,能够有备无患。这类面试题集的价值在于,它不仅反映了高校在选拔研究生时对于知识点的重视,同时也为那些即将面临同类型面试的学生提供了一个学习和准备的方向。 该合集中的题目覆盖了通信与信号专业领域内的多个核心知识点,如信号处理、无线通信、电磁场与波、网络协议等。这些知识点是通信与信号专业学生在本科阶段需要掌握的基础理论,也是研究生阶段深入研究的基础。面试题目的设计往往不仅要求学生能够回答出正确的理论知识,还要求能够结合实际问题进行分析和解决,这不仅考验了学生的知识水平,也考验了学生的逻辑思维和实际操作能力。 在准备面试过程中,学生需要注重理论与实践的结合,通过实际案例来理解理论知识,并能够在面试中展示出自己的分析和解决实际问题的能力。同时,学生还应该关注通信与信号领域的最新发展动态,把握行业前沿,因为面试题目中不乏可能涉及到该领域的最新研究成果或技术热点。这样的准备方式,能够帮助学生在面试中脱颖而出,展现自己的专业素养和对专业领域的热情。 另外,面试的过程也是一个自我展示的平台,学生应该学会如何在短时间内准确、清晰地表达自己的观点,这对于专业知识的传播和未来在学术界的交流都有重要的意义。因此,在准备面试时,除了要深入理解专业知识外,还需注重沟通技巧的培养。 该合集对于通信与信号专业的学生来说,是一份宝贵的面试准备资料。它不仅包含了专业领域内的高频考点,还提供了实际问题分析的视角,对于学生理解面试要求、提升面试技巧都大有裨益。
2025-09-09 08:43:38 51KB 保研面试
1
基于Matlab的通信信号调制识别数据集生成与性能分析代码,自动生成数据集、打标签、绘制训练策略与样本数量对比曲线,支持多种信号参数自定义与瑞利衰落信道模拟。,通信信号调制识别所用数据集生成代码 Matlab自动生成数据集,打标签,绘制不同训练策略和不同训练样本数量的对比曲线图,可以绘制模型在测试集上的虚警率,精确率和平均误差。 可以绘制不同信噪比下测试集各个参数的直方图。 注释非常全 可自动生成任意图片数量的yolo数据集(包含标签坐标信息) 每张图的信号个数 每张图的信号种类 信号的频率 信号的时间长度 信号的信噪比 是否经过瑞利衰落信道 以上的参数都可以根据自己的需求在代码中自行更改。 现代码中已有AM FM 2PSK 2FSK DSB,5种信号。 每张图的信号个数,种类,信噪比,时间长度均是设定范围内随机 可以画出不同训练策略,不同训练样本数量的对比曲线图 可以计算验证集的精确率,虚警率,评论参数误差并且画出曲线图 可以画出各个参数在不同信噪比之下的直方图 ,核心关键词: 1. 通信信号调制识别 2. 数据集生成代码 3. Matlab自动生成 4. 打标签 5. 对比曲线图
2025-07-03 09:48:20 2.53MB 柔性数组
1
针对通信信号调制方式识别问题,提出了采用高阶累积量与信号瞬时特征相结合提取通信信号特征参数的方法,并讨论了利用获得的特征参数进行模拟、数字通信信号调制方式识别的方法和过程。实验结果表明,该方法对通信信号调制方式有很好的识别效果。 通信信号调制识别技术是现代通信系统中一个关键的组成部分,它涉及到对信号传输特性的理解和分析。在复杂的通信环境中,正确识别信号的调制方式至关重要,因为它直接影响着信息的解码和恢复效率。本文主要探讨了一种结合高阶累积量和信号瞬时特征的新型调制识别方法,旨在克服传统识别技术的局限性。 高阶累积量是统计学中的一个概念,用于描述随机变量的非线性特性,特别是在处理非高斯噪声时表现出优势。相较于传统的二阶统计量(如均值和方差),高阶累积量能够捕捉信号的复杂结构,对非高斯噪声具有更好的抗干扰能力。在通信信号调制识别中,高阶累积量可以有效区分不同调制方式产生的信号,因为它们在高阶统计特性上存在差异。例如,AM(幅度调制)、ASK(振幅键控)和FSK(频率键控)等调制方式在高阶累积量上的表现各有特点。 然而,单纯依赖高阶累积量可能存在一个问题,即对于某些调制方式,它们的高阶累积量参数可能过于相似,导致难以进行准确的区分。另一方面,信号瞬时特征,如频率、相位或幅度的变化,可以提供关于信号结构的额外信息。但噪声可能会干扰这些特征的提取,降低识别精度。 为了解决上述问题,本文提出了一种综合运用高阶累积量和信号瞬时特征的方法。通过同时考虑这两种特征,可以增强识别的鲁棒性,减少误识别的可能性。这种方法首先计算信号的高阶累积量,然后提取信号的瞬时特征,如瞬时频率、幅度和相位的变化率。将这两类特征参数组合在一起,构建一个全面的特征向量,用于区分不同的调制类型。实验结果证明,这种方法在AM、2ASK、4ASK、2FSK、4FSK、8FSK、2PSK、4PSK、16QAM等九种模拟和数字通信信号中都能取得良好的识别效果,即使在不同的信噪比条件下也能保持较高的识别率。 这一研究不仅为调制识别提供了新的思路,还为优化通信系统的性能开辟了新的途径。结合高阶累积量和瞬时特征的方法有望在未来的通信系统设计中发挥重要作用,尤其是在复杂环境和高干扰条件下的信号处理。通过这种技术,可以实现更高效、更准确的信息传输,从而提升整个通信网络的性能和可靠性。
2025-04-19 13:05:39 128KB 特征提取; 调制识别
1
该数据集来自 OpenCellid - 世界上最大的蜂窝信号塔的开放数据库。 截至 2021 年,它拥有超过 4000 万条关于全球蜂窝信号塔(GSM、LTE、UMTS 等)的记录及其地理坐标和元数据(国家代码、网络等)。 OpenCelliD 项目在 Creative Commons Attribution-ShareAlike 4.0 International License 协议下许可使用,我们根据相同许可条款重新分发此数据集的快照。登录后即可下载最新版本的数据集。
2025-01-11 16:14:33 695.36MB 网络 数据集 大数据分析
1
铁路通信信号考试试卷A卷,题目不同网上重复
2024-05-17 16:45:55 64KB 铁路通信
1
铁路通信信号试卷A的答案,与之前上传的试卷对应,答案很齐全。
2024-05-17 16:04:38 28KB 铁路通信信号
1
自动调制识别是一个迅速发展的信号分析领域,已经成为了目前国际上最新的最热的一个研究热点,这本书的中译本覆盖了调制识别的所有完整内容,并且补充了作者最新的研究成果。
2024-01-11 18:05:05 2.99MB 信号调制 调制识别 神经网络
1
基于自适应滤波的通信信号去噪
2024-01-09 20:07:02 3.23MB 数字通信 调制与编码策略
1
详细讲解了基于MC13135和AD9851怎么制作通信信号分析仪!
2023-04-13 20:33:34 2.34MB 信号 分析
1