matlab迭代阈值代码Sista-rnn 论文代码 [1] S. Wisdom,T。Powers,J。Pitton和L. Atlas,“通过展开迭代阈值来建立顺序网络以进行顺序稀疏恢复”,ICASSP 2017,美国路易斯安那州新奥尔良,2017年3月 [2] S. Wisdom,T。Powers,J。Pitton和L. Atlas,“使用顺序稀疏恢复的可解释的递归神经网络”,arXiv预印本arXiv:1611.07252,2016年。在NIPS 2016复杂可解释机器学习研讨会上发表系统公司,西班牙巴塞罗那,2016年12月 通过以下方式包含代码: Stephen J. Wright,Robert D. Nowak和Mario Figueiredo,可从以下网站获得 Salman Asif,可从以下途径获得 Martin Arjovsky,Amar Shah和Yoshua Bengio,可从以下网站获得 要复制论文的结果,请按照下列步骤操作: 下载可从以下网站获得的Caltech-256数据集 执行“ run_supervised.sh”脚本。 这将为所有其他功能加载和预处理Ca
2023-04-20 01:00:03 370KB 系统开源
1
具有递归神经网络的文本生成 使用基于特征的RNN进行文本生成。 我们使用安德烈·卡帕蒂(Andrej Karpathy)的莎士比亚作品集。 给定来自此数据的字符序列(“莎士比亚”),训练模型以预测序列中的下一个字符。 通过重复调用模型,可以生成更长的文本序列。 模型的输出 以下是本教程中的模型训练了30个纪元并以字符串“ Q”开头时的示例输出: 奎妮:我以为你有罗马人。 Oracle这样,使所有人都反对这个词,因为他的照顾太弱了。 您的孩子们在您的圣洁的爱中,通过流血的宝座沉淀。 伊丽莎白·比什普(Bishop of Ely):我的主,嫁给并愿意哭泣,这是最漂亮的。 然而,现在我被世界可悲的一天收为继承人,要和他父亲一起面对面观看新路吗? 埃斯卡洛斯:为什么我们都下了更多儿子的原因。 卷:不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,不,这是没
2023-04-17 22:59:21 70KB Python
1
深度递归神经网络在语音分离中的应用和增强 语音分离实验 培训代码: codes/TSP/train_TSP_demo_mini_clip.m 演示版 在codes/TSP/demo/model.mat找到预训练的模型 在codes/TSP/demo/run_test_single_model.m运行演示代码 依存关系 该软件包基于 该软件依赖Mark Schmidt的软件包进行凸面优化。 此外,我们还包括了用于处理MFCC文件的Mark Hasegawa-Johnson的。 我们将用于计算功能(MFCC,logmel)(HCopy)。 我们使用信号处理功能。 我们使用工具箱版本2.0、3.0进行评估。 处理您的数据: 要尝试对数据进行编码,请参阅mir1k,TSP设置-相应地将数据放入codes/TSP/Data/ 。 调整开发集上的参数并检查结果。 笔记 使用MATLAB
2023-03-18 16:58:37 52.13MB MATLAB
1

针对一类未知的连续非线性系统, 提出一个基于单网络近似动态规划(ADP) 的近似最优控制方案. 该方
案通过设计一个新型的递归神经网络(RNN) 辨识器放松了系统模型需已知或部分已知的要求, 并利用一个神经网
络(NN) 近似系统的性能指标函数消除了常规ADP方法中的控制网络. 通过Lyapunov 理论分析严格证明了闭环系
统内所有信号一致最终有界, 并且所获得的性能指标函数和控制输入分别收敛到最优性能指标函数和最优控制输入
的小邻域内. 仿真结果验证了所提出控制方案的有效性.

1
针对高风险背景下的混沌时间序列区间预测问题,首次将回声状态网络与一致性预测框架相结合,提出基于两者的混沌时间序列区间预测算法.该算法将回声状态网络的拟合能力与一致性预测区间的可靠性相结合,使得最终的预测区间包含被预测值的频率或概率可以被显著性水平参数所控制,即预测区间具有极高的可信度.同时,由于使用岭回归学习回声状态网络的输出权重,使得算法在学习阶段对样本的留一交叉估计可以被快速地计算,极大地缩短了一致性预测的学习时间.理论分析表明,所提出算法的时间复杂度等价于原始回声状态网络算法的时间复杂度,即算法具有较快的计算速度.实验表明,所提出算法能够较精确地控制预测的错误率,对噪声具有鲁棒性,且预测区间比基于高斯过程的预测区间更加准确地刻画了被预测值的波动范围.
1
matlab的egde源代码en pyrenn是Python和Matlab的工具箱。 特征 pyrenn允许创建各种各样的(递归)神经网络配置 创建,训练和使用神经网络非常容易 它使用(二阶拟牛顿优化方法)进行训练,它比的一阶方法快得多。 在Matlab版本中,额外实现了 python版本是用纯python和numpy编写的,而matlab版本是用纯matlab编写的(不需要工具箱) 并已实施,可用于实施进一步的训练算法 它带有各种示例,这些示例显示了如何创建,训练和使用神经网络。 文章 安装 使用pip安装(仅适用于python) 在命令行中运行: pip install pyrenn 手动安装 或将此仓库克隆(带有)到您选择的目录中。 Python:将python文件夹中的pyrenn.py文件复制到python的搜索路径中已经存在的目录,或者将python文件夹添加到python的搜索路径(sys.path)() Matlab:将matlab文件夹添加到Matlab的搜索路径() 开始使用 在examples文件夹中运行给定的examples 。 阅读并创建自己的神经网络 版权
2023-02-15 13:41:41 1.72MB 系统开源
1
hsi matlab代码QRNN3D TNNLS 2020论文的实施 强调 我们的网络在高斯和复杂噪声情况下均优于ICVL数据集上的所有领先方法(2019),如下所示: 我们证明了在31频段自然HSI数据库(ICVL)上进行预训练的网络可用于恢复由于恶劣的大气和水吸收而被现实世界的非高斯噪声破坏的遥感HSI(> 100频段) 先决条件 Python> = 3.5,PyTorch> = 0.4.1 要求:opencv-python,tensorboardX,caffe 平台:Ubuntu 16.04,cuda-8.0 快速开始 1.准备训练/测试数据集 从以下位置下载ICVL高光谱图像数据库(我们仅需要.mat版本) 火车测试拆分可在ICVL_train.txt和ICVL_test_*.txt 。 (请注意,我们分别将101个测试数据分为高斯和复数降噪两部分。) 训练数据集 注意cafe(通过conda安装)和lmdb是执行以下说明所必需的。 阅读utility/lmdb_data.py的函数create_icvl64_31 ,并按照指令注释定义您的数据/数据集地址。 通过python
2022-10-15 17:01:12 2.5MB 系统开源
1
针对现有基于大数据和深度学习的目标检测框架难以实现在低功耗移动和嵌入式设备上实时进行视频目标检测的问题,改进了基于深度学习的目标检测框架SSD,提出一种改进的多目标检测框架LSTM-SSD,将其专用于交通场景视频多目标检测。将单图像检测框架与递归神经网络-LSTM网络相结合,形成交织循环卷积结构,通过采用一种Bottleneck-LSTM层提炼传播帧间的特征映射实现了网络帧级信息的时序关联,极大降低了网络计算成本;将时间感知信息与改进的动态卡尔曼滤波算法结合起来,实现了对视频中受光照变化、大面积遮挡等强干扰影响目标的追踪识别。实验表明,改进后的LSTM-SSD在应对多目标、杂乱背景、光照变化、模糊、大面积遮挡等检测难度较大的情况时,均能获得较好的效果,相比于其他基于深度学习的目标检测框架,各类目标识别的平均准确率提高了5%~16%,平均准确率均值提高了约4%~10%,多目标检测率提高了4%~19%,检测帧率达到43 fps,基本满足实时性的要求。其实现了算法精度与运行速率的平衡,取得了较好的检测识别效果。
2022-08-22 16:05:35 1.34MB 机器视觉 深度学习 递归神经网络
1
递归神经网络(RNN)近些年来被越来越多地应用在机器学习领域,尤其是在处理序列学习任务中,相比CNN等神经网络性能更为优异。但是RNN及其变体,如LSTM、GRU等全连接网络的计算及存储复杂性较高,导致其推理计算慢,很难被应用在产品中。一方面,传统的计算平台CPU不适合处理RNN的大规模矩阵运算;另一方面,硬件加速平台GPU的共享内存和全局内存使基于GPU的RNN加速器的功耗比较高。FPGA 由于其并行计算及低功耗的特性,近些年来被越来越多地用来做 RNN 加速器的硬件平台。对近些年基于FPGA的RNN加速器进行了研究,将其中用到的数据优化算法及硬件架构设计技术进行了总结介绍,并进一步提出了未来研究的方向。
2022-07-18 14:07:07 1.39MB 递归神经网络 FGPA 加速器
1
人工智能-多时滞递归神经网络的指数稳定性研究.pdf